
PHOTOGRAPH THIS SHEET

LoU

LEVELI'.VETORY

DOCUMEINT WETFITIO.

O I DISTRIBU TINSATEbmN AL

Approved for public rel.0s";
Distributioa Uahmnited

DISTRIBUTION STATEMENT

N-TIS GRAMI DTIC DTIC
UiN ANNOULNC ED
JUSTIFICATION DI

____ ____ ___ELECTE SMAR 14 19901
DISTRIBUTION/ E U

DISMRBLTION AVAILABIT ANDhOR SPECIAL (1
DATE ACCESSION ED

DISTRIBUTFION STAMIP

DATE RETURNED

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEFET AND RETURN 10. DTIC.FDAC

~C~d*AAPREVIS).S EDfrO0.*3AYBELSLO UTa
DIJIC 870 DOCL.-A%T PROCESSING SHEETF SIOCK ISSEXHALS7ND

I

NAVAL POSTGRADUATE SCHOOL
Monterey, California

U)

co 0,0

THESIS
AFFINE INVARIANT OBJECT RECOGNITTON BY

VOTING MATCH TECHNIQUES

by

Hsu, Tao-I

December 1988

Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

Thesis
H82975
c.2

UNCLASSIFIED
SECURITY CLASSF'CATiON OF THIS PAGE

REPORT DOCUMENTATION PAGE orm Approe

la REPORT SECUR!TY CLASSIFICATION 1b RESTRiCTiVE MARK NGS

UNCLASSIFIED
S 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUT:ON. AVA LABiL TY OF REPOP"

Approved for public release;
2b DECLASSIFICATION'DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATO% REPOR N4
,V'BE='S,

Naval Postgraduate School Naval Postgraduate SChool

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANZA' ON
(If applicable)

Monterey, California 62 Monterey, California
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

8a NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTiFCA',O% %VBEP
ORGANIZATION (If applicable)

8c- ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NuMBERS

PROGRAM PROJECT TASK I WOP. '1 1'T
ELEMENT NO NO NO aCCESS!ON NO

11 TITLE (Include Security Classification)

AFFINE INVARIANT OBJECT RECOGNITION BY VOTING MATCH TECHNIQUES

12 PERSONAL AUTHOR(S)

HSU, Tao-I
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) '5 PACE C024,

Master's Thesis FROM TO1 1988 December 103
16 SUPPLEMENTARY NOTATONThe views expressed in this thesis are those of the
author and do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe,)

FIELD GROUP SUB-GROUP Affine transformation; hashing function

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis begins with a general survey of different model based systems
for object recognition. The advantage and disadvantage of those systems
are discussed. A system is then selected for study because of its
effective Affine invariant matching [Ref. 1] characteristic. This system
involves two separate phases, the modeling and the recognition. One is
done off-line and the other is done on-line. A Hashing technique is
implemented to achieve fast accessing and voting. Different test data
sets are used in experiments to illustrate the recognition capabilities
of this system. This demonstrates the capabilities of partial match,
recognizing objects under similarity transformation of applied to the
models and the results of noise perturbation. The testing results are
discussed, and related experiences and recommendations are presented.

20 DISTRIBUTION 'AVAILABILITY OF ABSTRIMrT 21 Ad6STRACT SECURITY CLASSirICATION

[tXC.,..,;33D ... D [] SAME AS RPT [i DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 2t O ,CE S0v1' J

Chin-Hwa Lee 408-646-2190 62Le
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSF CATIOr. C-. T ,. '

S/N 0102-LF-014-6603
i UNCLASSIFIED

Approved for public release; distribution is unlimited.

Affine Invariant Object Recognition
by Voting Match Techniques

by

Hsu Tao-i
Captain, Taiwan Republic of China Army

B.S. Math, Chung Ching Institute of Technology, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Author: / L-°
Hsu Tao-i

Approved By: -__
Cn-Hwa Lee, This Advisor

C. W. Therrien, SeconcA ader

John P. Powers, Chairman,
Department of Electrical and

0 u r Engineering

Gordon E. Schacher
Dean of Science and Engineering

ii

ABSTRACT

This thesis begins with a general survey of different

model based systems for object recognition. The advantage and

disadvantage of those systems are discussed. A system is then

selected for study because of its effective Affine invariant

matching [Ref. 1] characteristic. This system involves two

separate phases, the modeling and the recognition. One is

done off-line and the other is done on-line. A Hashing

technique is implemented to achieve fast accessing and voting.

Different test data sets are used in experiments to illustrate

the recognition capabilities of this system. This

demonstrates the capabilities of partial match, recognizing

objects under similarity transformation applied to the models,

and the results of noise perturbation. The testing results

are discussed, and related experiences and recommendations are

presented.

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

A. FEATURE EXTRACTION (PREPROCESSING) 2

1. Fourier Descriptor Technique 3

2. Moment Techniques 3

3. Technique of Accumulating Local
Evidence by Clustering 4

B. MODELING (TRAINING/LEARNING) 4

1. Radius-angle 5

2. Orientation-arc Length 5

3. Curvature-arc Length 6

C. MATCHING (RECOGNITION) 6

1. Statistical Matching 7

2. Syntactic/Structural Technique 9

3. Relational Graph Method 10

4. Voting Match Techniques 11

II. AFFINE INVARIANT MATCHING 15

A. PARTIAL MATCHING 15

B. AFFINE TRANSFORMATION AND VOTING
TECHNIQUE 16

1. Affine Coefficient 16

2. Affine Coefficient Transform 18

iv

C. AFFINE INVARIANT RECOGNITION ALGORITHM . . . 22

1. Preprocessing (Feature Extraction) . 23

2. Data-Base Setups (Modeling) 24

3. Voting Match 25

III. ALGORITHM IMPLEMENTATION 28

A. SEARCHING 28

B. HASH TECHNIQUE 28

1. Hashing Implementation 30

C. PREPROCESSING 31

1. Laplacian Operator EGLP [Ref. 10] 31

2. Threshold Operation SLTH 31

3. Boundary Thinning THNG [Ref. 10] 32

4. Tracing Boundary BDFL [Ref. 10] 32

5. Maximum Curvature Finding MAXCUR 33

D. DATA-BASE SETUP 33

1. Affine Transformation 33

2. Hash Table Generation 37

E. RECOGNITION 40

1. SEARCH Module 43

2. VERIFY Module 44

3. RECONSTRUCT Module 44

IV. RESULTS AND PERFORMANCE 46

v

A. EXPERIMENT RESULTS 46

1. Test For Similarity Transformation . 46

2. Test For Partial Matching 48

3. When Numerical Error is Present
in the Test Object 49

B. ALGORITHM PERFORMANCE AND COMPLEXITY50

C. LIMITATIONS 53

1. Model Representation 53

2. Quantization Problem in Generation . .
of the Hash Key 54

3. Noise Handling 54

D. IMPRESSIONS OF THE ALGORITHM FEATURE 55

1. Two Phase Algorithm 55

2. Hash Implementation 55

V. CONCLUSION 57

A. SUMMARY 57

B. EXPERIENCE GAINED 58

1. Affine Invariant 58

2. Partial Matching 58

3. Speed and Complexity 58

4. Noise Perturbation 59

C. RECOMMENDATIONS 59

APPENDIX A: PASCAL-LIKE PSEUDO CODES 61

APPENDIX B: LISTING OF SOURCE CODES68

LIST OF REFERENCES 93

INITIAL DISTRIBUTION LIST 94

vi

ACKNOWLEDGMENTS

I would like to express my deep appreciation to my Thesis

Advisor, Dr. Chin-Hwa Lee, for his guidance and counsel in

assisting in the completion of this thesis.

I would also like to thank Dr. C.W. Therrien and LT

Michael Shields and Mrs. Cindy Shields, and Dan Zulaica who

contributed their assistance in the accomplishment of this

thesis.

Finally, I wish to express my gratitude to my parents, and

my fiancee, Wen-Yao Ko, who helped and supported me through

these laborious times to achieve this educational goal.

vii

I. INTRODUCTION

There has been considerable growth of interest in problems

of object recognition. This interest has created an increased

amount of theoretical methods and experimental

software/hardware for the design of object recognition

systems. Applications of object recognition include character

recognition, target detection, medical diagnosis, analysis of

biomedical images, remote sensing, identification of human

faces or fingerprints, archaeology, speech recognition,

machine part recognition, and automatic inspection.

Object recognition is primarily concerned with the

description and classification of measurements taken from some

physical or mental process. In general, object recognition

may be considered as:

" Observing the attributes or characteristics of the
objects,

• Selecting useful features from the set of characteristics
that are expected for representation of the objects,

" Performing the matching procedure with respect to a
specific goal on the basis of the representation.

It is obvious that the most popular and largely used

technique in object recognition is model-based recognition.

A model-based recognition system involves comparing the input

image with a set of predefined models of objects. The goal

1

of such a system is to create a description of each of a known

set of objects in advance. Then, these object models are used

to recognize unknown objects in an image and to specify

position and orientation relative to the viewers. A model-

based vision system contains three Dasic phases: feRture extraction,

object modeling, and unknown object matching. These are discussed in the

three subsections that follow.

A. FEATURE EXTRACTION (PREPROCESSING)

Using effective features in object recognition is a very

important factor for success. Features can be used to

describe or synthesize objects. Features of an object are

most often boundaries and geometric measurements derived from

boundaries. These features can be roughly classified into

three types: global, local, and relational features.

Global features include area (size), perimeter, centroid,
distance of contour points from the centroid, curvature
and moment of interia, and others which provide useful
information for object manipulation. The representation
of an object with these global features can be stored in
a feature lists, and the ordering of the features in the
feature list is not important.

Local features include line segments, arc segments with
constant curvature and corner, each describing a portion
of the object. They are organized in a highly structured
manner, such as an ordered list or a sequence of
equations. The ordering of the feature in this highly
structured manner is usually related to the object's
boundary.

Relational features include a variety of distance and
relative orientation measuremaents relating substructures
and regions of an object. Geometric relations among

2

local features (e.g., corner and line) may be of

particular interest.

Typical feature extraction techniques are the following:

1. Fourier Descriptor Technique

Fourier series representation of the parameterized

bouniary is one of the oldest and most well known tran-torm

technique. A finite number of harmonics of the Fourier

descriptors are computed from the patterr, boundary and

compared with a set of reference Fourier descriptors. This

description is global in nature, i.e., each coefficient

depends on every other point of the boundary. It is therefore

not suitable for recognition of partially occluded objects.

A minimum-distance classification rule can be used for the

recognition of various parts. [Ref. 21]

2. Moment Techniques

Moment techniques use parameters caiculated from the

pattern interior points. In these techniques, coordinates of

points belonging to the pattern are used to compute a set of

moments. These moments can be normalized to obtain measures

that are invariant under scaling and rotation [Ref. 3]. It

is difficult to relate higher order moments to the pattern.

This requires global feature extraction, so the moment techniques

have a shortcoming in rezognizing partially occluded objects.

3

3. Technique of Accumulating Local Evidence by Clustering

Directed edge elements (vectors) are used as one type

of primary feature which contains directional, positional, and

size information. First, point features (i.e., the head and

tail of a vector) are extracted, and then vectors are formed

from suitable point pairs. Straight edge detectors, curved

edge detectors, circle detectors, and intersection detectors

are employed to define vectors between point pairs. Holes are

detected by a set of circular masks and curves and

intersections are detected by linking edges together (Ref. 4].

Overall, using local features has the following

advantages:

* Local features may be cheaper to compute because they are
simpler and can be selectively (sequentially) detected;

* If a few local features are missing (due to noise or
occlusion), it may still be possible to recognize the
object on the basis of the remaining features associated
with the object;

* Since a few types of local features are often sufficient
to describe a large number of complex objects, it is
possible to specify only a few number of local feature
detectors which can be applied to the image.

B. MODELING (TRAINING/LEARNING)

Modeling is based on the object's geometric properties

such as object's shape and surface relative to the viewing

angle. The three basic types of features (the global feature,

the local feature, and the relational feature) are then

employed to describe or represent objects.

4

Possible modeling schemes include radius-angle representation,

orientation-arc length representation, curvature-arc length representation.

1. Radius-angle

The radius-angle representation requires a reference

origin. This is usually taken to be the object's centroid.

This representation is obviously scale-dependent. The need

for a reference origin (global feature) also makes it

unsuitable for recognizing partially occluded objects. Also

the need for the representation to be single-valued further

restricts the type of shapes that can be modeled in this

manner.

2. Orientation-arc Length

The orientation-arc length representation models the

angle made between a fixed axis and a tangent to the boundary

as a function of the arc length. This representation is scale

invariant but not orientation invariant. Straight horizontal

lines or this representation correspond to zero curvature

(i.e., straight lines in the boundary), and straight non-

horizontal lines correspond to segments of circles with the

radii or curvature given by the slopes of the lines. (This

allows the boundary to be easily segmented into straight lines

and circular arcs and is used sometimes in the initial

processing for feature matching).

5

3. Curvature-arc Length

The curvature-arc length representation models the

curvature of the boundary as a function of arc length. This

representation is orientation-invariant but unfortunately it

is not scale independent. (A circle of radius r, for example,

has a curvature of l/r). Also, curvature is very sensitive

to noise. However, curvature is a popular descriptor and this

representation is often used to extract the extremas (in

curvature) for feature matching [Ref. 5].

A discrete version of orientation-arc length

representation has also been used. Commonly called chain

codes, this models the boundary in short line segments that

lie on a fixed grid with a fixed set of orientations.

Although efficient in representation and cross-matching, chain

codes are rather sensitive to noise and have other

shortcomings that make this representation unsuitable for

general shape matching.

It should be noted that none of the representations

discussed above is simultaneously scale and orientation-

invariant.

C. MATCHING (RECOGNITION)

Given a set of models that describe all aspects of an

object to be recognized, the process of model-based

recognition consists of matching features extracted from

6

unknown objects of a given input image with respect to those

of the models. Matching techniques using global, local or

relational features provide a way to recognize and locate a

part on the basis of a few key features. Therefore, the model

description dominates other procedures in the model-based

matching process. The choice of matching process is highly

dependent on the type of model used for object representation.

We divide matching processes into three schemes: statistical

mathig, graph matching, and syntactic (structural) matching. Models using

global features are usually associated with statistical

matching techniques. Models based on local features are

usually associated with syntactic matching techniques, and

models using both local and relational features are usually

associated with graph matching techniques. Table 1 summarizes

the techniques used in three phases of the model-based

matching procedure.

.. Statistical Matching

Statistical pattern recognition can be divided into

non-parametric and parametric methods. Non-parametric

classification uses separation of clusters in feature space

and to recognize pattern classes. Parametric classification

on the other hand, is based on Bayes rule. It states that the

input feature vector belongs to a particular class, say j, if

the likelihood ratio (A) between two pattern classes i and j

7

Table 1. THE THREE METHODS BASED ON 2-D IMAGE
REPRESENTATIONS.

PHASE
zi Feature extraction Modeling Matching

Feature vector Statistical pattern
T Global scalar (unordered) recognition
E
C
H
N Ordered string Syntactical
I of features or voting
Q Local or abstract verification
U description of of string
E feature string description
S

Local
and Relational graph Graph searching

relational

is greater than the ratio of the probabilities of occurrence

of the pattern classes j over i.

For example, consider two classes w, and W 2 with a priori

probabilities P1 and P2 where (PI + P2 = 1). The Bayes

discriminant function f12(x) defining the decision boundary

between class 1 and 2 has the form

f12(X) = -[PL(w, d2)p(X/w) - P2L(w2,dl)p(X/W 2)] >0 (1)
per) (_

where

L(wi,dj)i,j = 1,2, (2)

8

is the loss incurred with the decision di when the i-th class

is true, and

2

p(X) = Pp(z/wi) (3)
t=1

and p(xl/d and p(x/w2) represent the conditional probability

densities associated with measurement x, given the unknown

pattern that came from class w, or W2 respectively. If f12(X)

0, we decide that x belongs to the 1st class; if f12(x) < 0,

decide the 2nd class.

It is evident that Bayes rule is based on a priori

knowledge. In practice, the collection of all the priori

statistical data becomes a serious problem.

2. Syntactic/Structural Technique

In syntactic methods, an object model is represented

by using abstracted and precise geometric primitives such as

arcs, lines and corners. These primitives are local in

nature, each describing a portion of the object. They are

organized in a highly structured manner, such as an ordered

list or a sequence of equations. The ordering of primitives

in this type of method is usually related to the object's

boundary in such a way that following the entire primitive

list sequentially is equivalent to tracing the boundary of the

object. Recognition uses a hypothesis-verification procedure.

The structural local primitives of the model are used to

predict where objects are located in the scene. Then,

9

primitives of the hypothesized object are measures on the

basis of the prediction hypothesized in the model, in order

to verify and find the match.

In this type of matching, the local primitives are

transformed into primitives which are organized into strings

(sentences) by some highly structured grammatical rules.

Matching is performed by parsing. A major problem with the

grammatical model is the construction of a grammar that is

comprehensive enough to generate all the possible types of

shapes of interest and yet discriminatory enough to reject

others. The grammatical model is inherently one-dimensional.

Noise perturbation of the model is also detrimental. A number

of grammars have been developed over the years. A good

description of these can be found in Reference 6.

3. Relational Graph Method

Objects can be represented structurally by graphs.

In this method, relationships among local geometric primitives

are represented by a graph. In the graph each node represents

a local geometric primitive and is labeled with a list of

properties (e.g., size) of the geometric primitive. Arcs

represent relational primitive linking pairs of nodes and are

labeled with lists of relation values (e.g., distance and

adjacency). Recognition of the object becomes a graph-

matching process. A disadvantage with this type of method is

the fact that a large number of geometric primitives must be

10

detected and grouped together to recognize an object. Thus

the matching algorithm used with these models must be more

complex and may be slower than matching algorithms used with

the other methods. Noises in the geometric primitives may

change the graph of the unknown object. No precise analytic

treatment of the noise problem is currently known.

4. Voting Match Techniques

A technique which is different from the traditional

techniques discussed above is the Voting Match techniques. In

this technique an object's model is defined first by

transforming the object's local features into an abstract

vector set. That is, the model representation is condensed

to lower dimensional vector sets which preserve the

geometrical characteristics corresponding to the original

feature vectors. Matching is done using an accumulator cell

to collect the strength of instances of occurring objects,

that is, to increment a vote whenever a match between the

unknown scene and the model occurs. The procedure matches all

possible instances of the image and the model features on the

basis of local evidence. From the peak strength in the

accumulator cell the candidacy of the model can be picked up.

Then, for verification, a line-drawing version of the object

will be performed. This method is believed to be more robust

because the voting procedure integrates all local information

before any recognition decision is made.

11

There are two typical voting match techniques. These

are Hough transform method and Affine transform method. Both

use geometric transformations to map instances of a given

pattern into peaks of a transform space.

The Hough transform method was originally developed

to handle simple pattern such as straight lines and circles,

but it was recently extended to arbitrary shapes [Ref. 7].

This technique can be summarized as follows. For the

reference pattern, code the boundary with respect to a fixed

reference point. For the test pattern, use this coding to

reconstruct the possible locations of the reference point.

The possible locations are thus obtained. If the two patterns

are identical, there would be a peak at the location of the

original reference point.

In this form, the Hough transform method has several

limitations. It requires the reference and test objects to

be of the same scale and orientation. To account for

orientation, the above procedures must be repeated for every

orientation to be distinguished. Thus computational

complexity increases rapidly if it is necessary to deal with

variations in scale and orientation. A more serious objection

is that the transform suffers from false peaks in the

accumulator array due to random matches caused by noise or

distortion.

12

In the Affine transform method, the same voting

technique is used as that in the Hough transform method.

However, it does not have the shortcomings such as

translation, orientation and scale variant problems,

or misrecognition due to false peaks. Therefore the Affine

transform method is often preferred. The Affine

transformation mathematically is an automorphism. An

automorphism of a mathematical structure is always a one-to-

one mapping of that structure onto itself which preserves its

structural properties. Therefore, Affine geometry could be

called the geometry of parallelism, that is, Affine geometry

has the characteristics of parallelism and the preserving of

the ratio of parallel line.

In object recognition terms, any two different top

view images of the same flat object are in an Affine 2-D

correspondence. The Affine transform method involves a

nonsingular 2 x 2 matrix A and 2-D (translation) vector b,

such that each point x in the first image is translated to the

corresponding point Ax + b in the second image. Our problem

in this thesis is to find the identity of objects in the scene

and the Affine transformation between their locations in the

scene and the stored models. The study is concentrated on

recognition of flat rigid objects. However, this method can

be extended to general and 3D objects. More detail about the

13

Affine transformation method will be addressed in the

following chapters.

In Chapter II there is a discussion of the basic

concept of Affine invariant transform illustrated through

translation, rotation and enlargement of an arbitrary incoming

sensed pattern. Motivated by this concept, a model-based

object recognition system was developed. Chapter III details

the algorithm and the system implementation that consists of

three general object recognition phases: feature extraction

(preprocessing), object modeling and object matching (recognition). Chapter IV

dscusses possible ways to improve the system performance and

discussion of topics for further study. The Pascal-like

pseudo code programs are included in Appendix A to explain the

implementation. Appendix B contains the entire Affine

invariant object recognition system source codes.

14

II. AFFINE INVARIANT MATCHING

The occluded or overlapped object recognition problem has

received more attention recently in the object recognition

community. A recognition technique that can identify an

occluded object is discussed in this chapter. To understand

many of the concepts involved in this work, a basic background

for the Affine transformation is presented. The application

of Affine transformation in the object recognition through

match and voting techniques is also discussed.

A. PARTIAL MATCHING

In the industrial robotic vision application, parts often

appear to be occluded to the sensor. Occluded objects are

difficult to recognize by using the traditional or global

feature recognition method. Object recognition techniques

using global feature need to know the complete information

representing or describing the objects. Once some portions

are covered by other objects, the information will cause the

recognition to fail. Accordingly, it is necessary to describe

our objects by a set of local features. This situation is

applicable to the human vision system, which is also capable

of recognizing the object in the presence of considerable

15

occlusion. The local features can be points, line segments,

curve segments, borders, or other structures obtained from

feature extraction.

Initially, attention is restricted to the use of special

points of the boundary, which we denote as interesting points The

point sets of the various objects are matched against the

point set of the composite overlapping test object using a

small number of corresponding points. To elaborate upon these

views, one particular geometrical transformation with a unique

mapping characteristic is used. That is the Affine

coefficient invariant transformation discussed below.

B. AFFINE TRANSFORMATION AND VOTING TECHNIQUE

1. Affine Coefficient

The interesting point set can be transformed to an Affine

coefficient pair (,ri). Any three non-collinear points can

uniquely specify a plane. The rest of the points of that

plane can be expressed in terms of these three points. This

representation is in terms of the Affine coefficient pair (,ri).

The objects to be recognized in our system are assumed

to be planar objects. The known objects are stored as models

in the data-base in advance. Recognition of test object by

comparing it to the models is based on two different sets of

Affine coefficients which are obtained from the test object and the

models respectively. Figure 1 shows this concept graphically.

16

AFFINE COEFFICIENT MATCHING

MODEL TEST OBJECT
FEATURE FEATURE

NON-COLINEAR NON-COLINEAR
INTERESTING INTERESTING
POINT SET POINT SET

AFFINE
TRANSFORM AFFINE

TRANSFORM

AFFINE AFNCOEFFICIENT AC EFFlCEIN

MATCH??

Figure 1. The Concept of Recognition in Affine Coefficient
Space.

17

2. Affine Coefficient Transform

Affine coefficient matching is one of the important

matching techniques. It is motivated by the fact that any

Affine transformation of a plane [Ref. 8] is uniquely defined

by knowledge of three non-collinear points (or triplet) in the

plane. The Affine transformation is always unique; it maps

any non-collinear triplet in one plane to another non-

collinear triplet.

To illustrate the "invariant" characteristic of the

Affine transformation, consider the following example. For

the pattern of Figure 2, there are four vertices A=(0,0),

B=(0,1), C=(1,0) and D=(1,0). Point D can be expressed by

points A, B and C (i.e., triplet), through the representation.

D = (B - A) + n (C - A) + A (4)

i.e.,

(1,0) = [(0,1) - (0,0)] + t7[(1,2) - (0,0)] + (0,0) (5)

Solving for the unknown variables and n, we get

= -2,n = 1

To show the characteristic of this transformation, let us

examine the following cases.

a. Case t Translafion

Assume that there is a translation applied to the

original pattern in Figure 2. The translation of the original

pattern is accomplished by adding 1 to the coordinate of each

vertices and results in Figure 3. In Figure 3, points A', B',

18

4

3

2

0-
0 1 2 3 4 5 6

Figure 2. original Pattern.

4

3 . B-.-..

A'17

0
0 1 2 3 4 5 6

Figure 3. Translated Pattern.

19

C', and D' correspond to A, B, C and D respectively and have

coordinates A' = (1,1), B' = (1,2) , C' = (2,3) and D' = (2,1).

Point D' can also be expressed by A', B' and C' as:

D'= (B' - A') + ,(C' - A') + A' (6)

i.e.,

(2,1) = [(i,2) - (1,1)] + 1[(2,3) - (1,1)] + (1,1) (7)

Solving for the unknown we again obtain

C = -2,n = 1

It is seen that the Affine coefficient pair remains the same

in this case.

b. Case I1: Rotation

Figure 4 shows the result of adding 1 and rotating

the original pattern by 90' Now, A' = (2,3), B' = (2,2), C' =

(1,1) andD' = (1,3). Point D' can again be expressed in terms

of A', B' and C' as:

'= (B' - A') + ,7(C' - A') + A' (8)

i.e.,

(1,3) = C[(2,2) - (2,3)] + q [(1,1) - (2,3)] + (2,3) (9)

Solving for the unknowns again, we get

= -2,,? = 1

The Affine coefficient pair is still the same as before.

c. Case Ill/ Enlargement-Scale Change

The combined effect of translation, rotation, and

enlargement, which is generated from the original pattern by

adding 1 (translation), rotating 90 ° , and multiplying by 2

20

6

D A"
. .. 3

B

C

0
0 1 2 3 4 5 6

Figure 4. Pattern After Rotation.

(enlargement) is shown in Figure 5. Here, the vertices are

A' = (4,6), B' = (4,4), C' = (2,2) and D' = (2,6). Point D' can

also be expressed by A', B', and C' as:

D' = (B' - A') + 7(C' - A') + A' (10)

i.e.,

(2,6) = [(4,4) - (4,6)] + ?[(2,2) - (4,6)] + (4,6) (11)

Again we find

= -2,n = 1

In all those four cases, and q are exactly the

same. We have illustrated the invariant property of the

transformation in the above cases. That means that the Affine

coefficient pair (E,n) does not change in those four cases.

The Affine invariant matching technique studied in this thesis

is based on this property.

21

6A

5...

3 ...

, ~

C

0

0 1 2 3 4 5 6

Figure 5. Pattern After Translation, Rotation and Enlargement.

For a test object in the scene, we can exploit

this property to represent those points of the test object in

terms of their Affine coefficients which are invariant to

similarity transformations. That is, we change the object

representation from the interesting point representation of

the original plane (the higher dimension representation) to

a representation based on the non-collinear triplet (the lower

dimension representation). In this coefficient space, it is

possible to apply search and voting techniques to recognize

the test objects.

C. AFFINE INVARIANT RECOGNITION ALGORITHM

The Affine coefficient invariant property was illustrated

in section II.B.2. It is possible to exploit this property

22

to recognize planar objects. We divide the recognition

process into two separate procedures. The first procedure is

Modeling (encoding). The second procedure is the Recognition (Matching).

The Modeling procedure has two phases: preprocessing and data-base setup.

The recognition procedure has three phases: Preprocessing, Data-base

access and Voting match. The purpose of the Preprocessing is to extract

a set of interesting points from the object. It is used both in the

Modeling procedure and the recognition procedure. The Date-base setup

includes choosing three arbitrary non-collinear points

(triplet) as an Affine basis and generating the coefficients

and n. These are used as index keys to create a search

table with the triplet as its content. In the Recognition

procedure the Affine coefficient of the interesting points of

the test object (,q) is also used as the index keys to search

the previously created table. When there is a match, we

increment a vote. The total vote will be used t.o decide

whether the basis of the test object is the one corresponding

to that of the model.

1. Preprocessing (Feature Extraction)

This phase is done to extract features for either the

models in the date-base or the test patterns. These features

can be points, line segments, curve segments, etc., as

mentioned in Chapter I. In general, the more features

extracted, the more detail it is possible to describe a model.

Hopefully, with more features, more accurate recognition can

23

be achieved. However, this approach will increase computation

complexity. Using the extracted features, a model

approximation is formed, using the set of interesting points

for each object model. Since the image is assumed to be flat,

only one set of interesting points is involved. For 3-D

objects, it may be necessary to extract several sets of

interesting points, one for each orthogonal projection of the

object. Smoothing and data reduction are also two of the

primary effects in feature extraction. The thesis work

studied here will not emphasize the feature extraction phase. The

processing steps will be discussed in more detail in section

III.A.

2. Data-Base Setups (Modeling)

This phase is the second step in the Modeling (encoding)

procedure where creation or update of the model data-base is

accomplished. The objective of this phase is to encode models

in the data-base and to create the search table. Each model

object is represented by a set of local feature interesting

points which were obtained from the Preprocessing. A total of m

interesting points are extracted from the model, (i.e., the model

points). These model points approximate the object in a

special form. For each ordered non-collinear triplet of model

points the coefficient (, f) of all the rest of the m-3 model

points are computed. Taking this triplet as an Affine basis

in the 2-D plane, the other points can be represented as

24

V = (e10 - e00) + q (e01 - e00) + e00 (12)

where e00, e01, ej0 are the three selected non-collinear points.

Application of an Affine transformation T described in section

II.B.2. will change the point v to

Tv = (Tejo - Teoo) + r, (Tejo - Teoo) + Teoo (13)

Hence, Tv still has the same coefficient (,q) on the

new triplet basis Te00, Tej 0 , Te01 . Each such coefficient is

used as an index to access the search table. The entry of

this search table may have a variable number of ordered pair,

(modeid, basis-tripletid). The ordered pairs helps to access the

vote array to register the basis-triplet by which the

coefficient was obtained. Some detail of the search table is

shown in Table 2. This is a conceptual table mainly used to

illustrate the algorithm. The actual implementation is

different in detail. That will be discussed in the next

chapter.

3. Voting Match

In the recognition procedure a test object is given

in a scene. First, the interesting points of this test object

(say we have n interesting points) have to be extracted. An arbitrary

ordered test triplet of the interesting points of the test

object is selected. Based on the test triplet, the Affine

coefficient of the other points can be calculated. The search

25

table consists of entries indexed by (Each entry may

have a variable number of records of ordered pair (modelid, basis-

Table 2. CONCEPTUAL SEARCH TABLE FORMAT.

1ST AFFINE
COEFFICIENT (MODELIDTRIPLETID) VOTE (MODELID,TRIPLETID) VOTE
(KEY1,KEY2)

2ND AFFINE
COEFFICIENT (MODELID.TRIPLETID) VOTE (MODELID,TRIPLETID) VOTE
(KEY1,KEY2)

3RD AFFINE
COEFFICIENT (MODELID,TRIPLETID) VOTE (MODELID,TRIPLETID) VOTE
(KEY1,KEY2)

tripletid) , where the model field is an integer for model

identification and the basis-triplet field is the model triplet used

as the Affine basis for the model. Associate with each record

of ordered pairs is a vote array called "vote." This is

initialized to zero.

During the recognition procedure, for each Affine

coefficient pair (E,q) the search table created in the Data-Base

Setup phase is accessed and those vote fields are also tallied.

For each entry of the table, different (modelid, basis-tripletid)

pairs with the same (C,q) are accessed and the entries of

"vote" are incremented by one. If the entry of the search

table scores a large enough number of votes, all ordered pairs

of this entry become possible candidates to match the test

26

object. The next step is to decide which of the ordered pairs

(i.e., which model) will be the real matched one. The

selection process is based on the fact that the model with the

maximum accumulated vote is the matched model. The model

triplet of the ordered pair of the maximum accumulated vote

then corresponds to the one chosen for the test object. The

uniquely identified Affine transformation, between the model

triplet and the test triplet, is the selected transformation

between the model and the object. Using the selected model

triplet and all entry of the pairs (6,n) associated with this

selected maximum vote model triplet, it is possible to

reconstruct the recognized model in the scene. If the

selected model triplet and all of the associated pairs (e,q)

do not match the dimension of the model, the second maximum

vote model triplet and its associated pair (,n) is checked

in the same way. Because of this checking procedure the test

object can be reconstructed even when there is occlusion.

27

III. ALGORITHM IMPLEMENTATION

A. SEARCHING

Searching plays an important role in the Affine recognition

procedure. It is necessary to search the table shown in Table

2. Search is dependent on the index or search key. This is

a content dependent search. The objective of the search is

to collect the instances (basis-triplet) of the models which

occurred in the test object. The more instances of the model

occurring in the test object, the more confident will be the

decision which shows what part of the test object resembles

the model. Content dependent search is inherently slow.

Therefore, special techniques are needed to speed up this

procedure.

B. HASH TECHNIQUE

In the recognition procedure, the result of the Affine

transformation of the interesting points is actually a pair

of real coefficient, i.e., (By multiplying it with a

constant, this pair of coefficients can be added to generate

the key, i.e., inkey, in this system. Since the quantized real

coefficient is somehow random, it is not desirable to use

sequential array data structure like those shown in Table 2.

28

The storage overhead and speed reduction will be too severe.

The Hashing technique is a preferred technique. The inkey is

associated with a location of an accumulatorcell. The accumulatorcel

is used to store the instance of the occurrence of the

candidacy model.

Hashing is a many-to-one mapping that does not usually

preserve the order of the keys of a list. Hashing is achieved

by deriving a hash key from the inkey which indicates to which

sublist or neighborhood a record belongs. This sublist is

called a bucket. The biggest problem is Hashing is the

difficulty in producing a relatively uniform number of records

in the bucket. When the keys, inkeyl and inkey2, of two distinct

records are converted to the same hash key, there is a

collision. To solve this problem in this system, it is

necessary to use a linked list to append the collided record

after the last record in the bucket. The linked list is used

to link all records in the same buckettogether with the same

hash key.

There are several possible Hashing implementations. One

of the best general purpose methods is the division method

[Ref. 9]. Our system is based on this method. In this method

an inkey is divided by a number which is the table size in this

system. Then, the record is assigned to the bucket that is

associated with the remainder, i.e., the hash key. Table size

is determined by the possible number of (,q) pairs generated

29

from the interesting points of the model for all bases.

Figure 6 shows hash key generation by division.

inkey = current key value START

hashkey = hashed value /

hashkey = inkey MOD tablesize

) r

Figure 6. Hash Key Generation by Division from Inkey.

1. Hashing Implementation

The algorithm implementation is divided into two

separate procedures. The first procedure is Modeling (encoding).

The second procedure is Recognition (Matching) . The Modeling

procedure has two phases: preprocessing and data-base setup. The

recognition procedure has three phases: preorocessing, data base

access, and voting match. The implementations for each of these

modules are described in sequence. In preprocessing the

interesting points of the boundary are formed. In data base setup

the Affine coefficient pairs (,f) are calculated which are

30

used to generate the "Hash" table. In voting match the test

object and models in the data base are compared in terms of

(modelid, basis-tripletid) pair.

C. PREPROCESSING

The preprocessing is shown in Figure 7, which consists of

a number of steps. All the modules in this phase are adopted

from the commercial package SPIDER [Ref. 10] on a VAX 11/780

system. SPIDER is an image 1-rocessing utility software

package. There are five routines written in FORTRAN used for

preprocessing.

1. Laplacian Cperator EGLP [Ref. 10]

The Laplacian function f(X,Y) of two independent

variables is defined as

o2f(Xy) a2f(X,Y) (14)

(OX2 a y2

The image intensities change sharply at places where

V2f(X,Y) is large. The outline is detected and obtained from

the Laplacian image plane.

2. Threshold Operation SLTH

This operation thresholds the output data of the

Laplacian operator and generates the input data for the

boundary tracing operation conducted later. That is,

J 256 if V 2f(X,Y) > THRESHOLD (15)
gx, y) = 0 otherwise

31

START

EGLP

,:SLT H

BDFL

BOUNDARY

CHAIN CODE

MAXCUR
INTERESTING

POINT SE T

(:EXITj

Figure 7. Preprocessing Procedure Control Flowchart.

3. Boundary Thinning THNG [Ref. 10]

The boundary outline of the image is thinned to a

width of 3 pixels.

4. Tracing Boundary BDFL [Ref. 10]

Boundary tracing is the conversion from boundary

coordinates to chain codes [Ref. 11]. The line is represented

by the coordinates of the starting point and a series of codes

indicating the slope of the line segments (or links). The

32

BDFL algorithm primarily involves raster scan and tracking of

the data.

5. Maximum Curvature Finding MAXCUR

The interesting points are taken at places where the

chain code slope is greater then a certain threshold.

At the end of the preprocessing phase, the interesting

points of the boundary are selected from either the model or

the test object.

D. DATA-BASE SETUP

The data-basesetup phase is shown in Figure 8. In the data-base

setup phase of the modeling or encoding procedure, two steps are

involved. They are discussed in the following.

1. Affine Transformation

AFFINE is the first step in the data-base setup phase.

From the interesting points, a set of non-collinear triplets

is chosen as an Affine basis. Then the Affine coefficient

pair (EP) of the other points are calculated. The Affine

coefficient pair (,n) is then converted from real data type

to integer type by multiplying it by a constant. For example,

if there are four interesting points (X1,Yl), (X2,Y2), (X3,Y3)

and (X4,Y4), the fourth point is expressed using the other

three as a triplet basis,

X 4 = (X1 - X 2) + '(X 2 - X 3) + X 3 (16)

Y4 = C(Y1 - Y2) + '7(Y2 - Y3) + Y3 (17)

33

Preproc- aHASHKEYDATA FILE
ssing ,

jk HASHAFFINE a •

COMB * * INITI-
* ALIZE

"* CLL HASHING

PERM C ISION

• CALCULA-I TCOD ' "SOrFL

IIASII3AIA FILE

(IIASII TABLE)

• MATRIX •

S MULT

Figure 8. Data-Base Setup Procedure Control Flowchart.

and (and q are solved from the above equations. That is

(()\= ((XT1 X2) (X2 - XT3) (X 4 - X3) (8

,7 (Y 1 -Y 2)(Y 2 -Y 3) (Y4 -Y 3)

34

This procedure is repeated for all different ordered

triplets (i.e., permutations ariu combinations) as basis until

every possibility is exhausted. This will generate an output

file (hashkeydata). (The format of this data file is described

in Table 3.) The main Affine program reads the interesting

point data from the input file interestingdata and invokes the

following modules to accomplish the task. The Pascal-like

pseudo code and source program of all modules are listed in

Appendix A.

Table 3. HASHKEY DATA FILE FORMAT.

model triplet key key moael moael
inkey id id 1 2 triplet base triplet base

X1,X2.X3 Y1,Y2.Y3
entry 1 -20000000 1 1 -1 -1 30,20,40 40,30,30

entry 2 0 1 1 1 -1 30,20,40 40,30,30

entry i 10000000 2 1 1.5 -0.5 40,30,20 10,10,30

e n try
m

Note: inkey= 10000000* (key I + key2)

entry1 and entry 2 belong to the same model triplet

a. COMB Module

This module is a recursive module which generates

all the possible combinations of triplets from the input

interesting points. If there are m interesting points, the

total number of combinations will be

C3 (m 1)(m -2) (19)
3!

35

For each combination this module will call the COLLINEAR

module.

b. COWNEAR Module

This module tests the collinearity of the

combinations sent from the COMB module. Slopes among the

points are checked to verify the collinearity. If the test

of collinearity is not successful, this module then calls the

PERM module. If the test is successful, control will be

returned to the COMB module for a new combination.

c. PERM Module

Given the combination passed from the COLLINEAR

module, this module generates all the permutation. This is

again a recursive program. For each permutation it calls the

CALCULATE-COORD module.

d. CALCULATE-COORD

This module calculates the base-matrix

base - matrix (X I - X
2)(X 2

- X 3) (20)
(Y1 -Y 2) (Y2 - 1's)3)

It then calls the INVERSE module by passing the base-matrix for

inversion. Then it calculates the difference for the rest of

the interesting points (Xi,Y)

difference = (Xi - X3) (21)

This module then invokes the MATRIX-MULT module to get the final

solution, the Affine coefficient pair (j, i)-

36

e. INVERSE Module

This module calculates the inverse-matrix, for the

solution of and T, that is

((XI X 2)(X2 - X3) -1 ((Y 2 - 113) (X2 - X3)
inverse - matrix = (1 - 12) (Y2 - Y3)) (Y- e Y2) (X1 - X2)) (22)

f. MA TRIX-MULT Module

This module calculates the final Affine

coefficient pair (i,ii) • That is

()=(X (X 2) (X2- X3) \V1((-X 3) (23)7i(I Y) Y 3 ()"i- Y 3)

2. Hash Table Generation

HASH is the second step in the Data base setup phase. At

the end of AFFINE execution, the (modelid, basis-tripletid) pairs are

created and stored in a file (hashkeydata) with other support

information shown in Table 3. This is an input file to the

HASH module.

The purpose of the HASH program is to read the input

file hashkeydata and create the Hash table with the format as

shown in Table 4. The Hash table is a linked list structure.

Each record has extra fields: hashkey, inkey, and link.

This structure is the actual implementation used in the

experiment; it is different from the search table in Table 2

used for conceptual illustration. The link field is used to

link the collided records while the Hash module maps two records

with two different values of inkey to the same hashkey. As an

37

Table 4. THE HASH TABLE FORMAT.

0 0'a, 0 0-

-o -4 *-

•0 I- €-

~Q.a

I..

x 41

, '
0

1(. E

• -- 0 .

E E VolEN E E 'a ...:.c

- '1- a-

-'."-T
38

>5 >5g~ cE

UP G 41 n38

example, for a module with four interesting points, the Hash

table size is 4 x 6 = 24 where 4 is the combinations of three

out of four and 6 is the permutations of three out of three.

The main task of the HASH module is to generate a consistent

Hash table for the recognition procedure. Three modules are

called from the HASH program.

a INITIALIZE Module

This is called to initialize the field hashkey and

link all of the record to empty label.

b. HASHING Module

After initialization, the Hash main program invokes

the HASHING module to convert Affine coefficient pair (

(i.e., (keyl,key2)) to inkey by adding them and multiplying the

sum with a constant multiplier. That is:

inkey = (keyl + key2) x multiplier (24)

The HASHING module also generates the hashkey as

following:

hashkey = inkey MOD tablesize (25)

The HASHING module then tests if the record

accessed by the hashkey in the Hash table has an empty hashkey

field. If so, it will insert the current record of the input

file (hashkeydata) into the Hash table. Otherwise it will invoke

the collision module.

39

c. COLUSION Module

This module tests to see if the accessed record's

link field of the Hash table is empty. If it is empty, the

current record of the input file is the first new-comer into

the bucket list pointed to by the link field. The current record

is put in the next available position in the Hash table. The

link field of the accessed record is updated to point to this

new position. If the link field is not empty, then using the

link field, the module can find sequentially the last existing

entry of the bucket list and append the current record after

the last entry.

E. RECOGNITION

Once the Modeling (encoding) procedure is accomplished, it is

possible to start the recognition procedure of a test object.

The flow chart of recognition procedure is shown in Figure 9.

After the preprocessing, a set of n interesting points of

the input test object were generated. The AFFINE program is

invoked to process these points. This program includes

modules COMBINATION, COLLINEAR, CALCULATE-COORD, INVERSE and MATRIX-

MULT to obtain the Affine coefficient pairs (1i,%) i =

1,2,...,n - 3 of the test object. Those Affine coefficient

pairs (ji,ni) and the associated test triplet are stored in an

output file (candidatedata) . The format of output file

(candidatedata) is shown in Table 5. Inkey is used to access the

40

TALLY CISTART I

AFFINE

a .~

SEARCH

• VERIFYN

• VOTE > TH

YU* 4 -

• RECONS
STRUCT

UN

uare

error <TH?
Is it minimun?

RECOGNIZEO

Y I' MOOEt OISPLA Y

a ._, VQTeO>sh;

N the

Figure 9. Recognition Procedure Flowchart.

Hash table and the test triplet is used to establish the

correspondence between the model triplet of the Hash table,

41

and the test object at the end of the recognition procedure

for reconstruction.

The objective of the tally program is to accumulate

incidences of correspondence between one test object's triplet

(candidatedata) and one model triplet. Each model has a set of

triplets and there could be multiple models in the Hash table.

Both of these two set of triplets and the associated

interesting points could generate the same Affine coefficient

pairs (,'1)- This represents one incidence of the match.

In other words, the Affine coefficient pair (i,ni) generated

by a test triplet is used to access the Hash table. Matching

between test triplet and model triplet is done in the Affine

Table 5. CANDIDATE DATA FILE FORMAT.

test triplet test triplet
inkey key 1 key 2 base X base Y

X1,X2,X3 Y1,Y2,Y3
candidate 1 -20000000 -1 -1 30,20,40 40,30,30

candidate 2 0 1 -1 30,20,40 40,30,30

candidate 3 10000000 1.5 -0.5 40,30,20 10,10,30

candidate n

Note: inkey = 10000000 * (key 1 + key 2)

candidate 1 and candidate 2 belong to the same test triplet

coefficient domain. During the search, whenever there is a

corresponding model triplet in the Hash table with the same

Affine coefficient pairs as those of the test triplet, this

model triplet in the Hash table is declared to match the test

42

object. The program tally first reads the input file (candidatedata)

of the test object into a record array (cand) and then the hash

table data (nashdata) into the record array (model) . Three

modules: SEARCH, VERIFY, and RECONSTRUCT are involved in this

program.

1. SEARCH Module

Given a particular test triplet record from the input

file (candidatedata), the Affine coefficient pair (i, i) and inkey

are used to perform the access and comparison of the Hash

table. That is

hashkey = inkey MOD tablesize (26)

Using the calculated hashkey, a certain entry of the created

Hash table is accessed. If there is a match, i.e., a hit

occurred in the Hash table, the corresponding 2-dimensional

array vote(modelid, tripletid) shown in Table 4 with the same (modelid,

tripletid) pair is incremented by one. At the same time, the

accessed entry of the Hash table is moved to a temporary

table. The data format of the temporary table is shown in

Table 6. This table is needed later to reconstruct the model

outline in the test object for graphic presentation. This

entire procedure is executed iteratively until all of the

interesting points of the test object based on the same test

triplet are exhausted.

43

2. VERIFY Module

This module examines the 2-D array vote(model/id, tripletid)

to select all the model triplets whose accumulated votes are

all greater than a given threshold value. Based on the

position (modeid, tripletid) of those that are greater than the

threshold value, the model triplets are selected as the one

most possibly corresponding to the test object's triplet.

Table 6. TEMPORARY TABLE DATA FORMAT.

accessed
hashkey inkey model triplet key key model1 2 triplet

temp 1 24 -20000000 1 1 -1 -1

temp2 72 0 1 1 1 -1

tempi i 10000000 2 1 1.5 -0.5

"i" is the number of the number of the test triplet

With the selected model triplets, control goes back to the

temporary table to collect all those Affine coefficient pairs

(6i,fi) for the selected model triplets. Comparison between

the (modefid, tripletid) in the temporary table and the selected

(modelid, tripletid) are necessary in this process.

3. RECONSTRUCT Module

The main purpose of this module is to reconstruct the

model outline in the test object and check the squared error

and for graphics presentation. Based on the selected model

triplets and the collected Af fine coefficient pair (i, i) from

the VERIFY module, an inverse Af fine transformation is performed

44

to calculate the sets of model coordinates in the model space.

With the interesting point data file of the model the order

of these points can be established. With the same (Ci,qi) and

the test triplet, the corresponding interesting points in the

test space can be found according to the established order.

The square error between each set of the model coordinates and

the corresponding interesting points in the test space is

measured. If the calculated square error is minimum and it

is less than a given threshold, the optimum model triplet can

then be determined. Based on the optimum model triplet, the

graphics presentation of the model can be displayed in the

test scene. In order to recognize all the possible models

existing in the test object, after one model is recognized

successfully, control goes back to the SEARCH module to find

another peak in the array which has a different modeid and the

rest of the procedure is repeated. If none of the calculated

square error satisfies the given threshold, control goes back

to the VERIFY module to use the second test triplet and repeat

the procedure.

45

IV. RESULTS AND PERFORMANCE

A. EXPERIMENT RESULTS

The Affine invariant matching technique via hashing has

demonstrated its characteristics of object recognition in

several experiments. To concentrate the effort on the study

of the Affine invariant technique and the implementation of

the technique in software, the model data and test data were

artificially created in the experiment. Two different models

shown in Figure 10 were stored in the data-base after

preprocessing phase.

1. Test For Similarity Transformation

The first unknown test object is fed into the system.

The test object and the recognized model are shown in Figure

11. This is a case of recognizing objects under similarity

transformations, i.e., rotation, translation and scaling.

The Affine invariant matching is obviously successful

in detecting objects under a similarity transformation.

Similarity transformation is a special case of a general

Affine transformation. The key observation here is that since

the similarity transformation is orthogonal, two points are

enough to form a basis which spans the 2-D plane. A

similarity transformation occurs in the situation when the

46

MODEL#1 MODEL #2

Figure 10. Two Different Models in the Data-Base.

TEST OBJECT RECOGNIZED MODEL IS #2

Figure 11. Similarity Transformation Case and Recognized

Model.

viewing angle of the camera is the same as that of the model.

Sucn a condition usually occurs, for example, in a factory

environment where the viewing angle of the camera is kept

constant. Consequently, this algorithm can be directly

applied to industrial machine vision.

47

2. Test For Partial Matching

To test the situation where model can be identified

partially, a test object of a composite overlapping scene in

Figure 12 of the two different models from the data base is

used. The recognition results are shown on the right hand

side of Figure 12.

TEST OBJECTS RECOGNIZED MODELS

Figure 12. Composite Overlapping Test objects Scene and
Recognized Model.

Note that the hidden model's interesting point can

still be reconstructed due to the partial matching

characteristic of the algorithm. In other words, the hidden

local feature such as the basis-triplet in our system can be

recovered or assisted by the rest of the basis-triplets during

the recognition phase.

48

3. When Numerical Error is Present in the Test Object

If the coordinates of c and d are very close to each

other as shown in Figure 13, c and d cannot be part of the

qualified triplets. The collinearity check module will

discriminate these cases.

d
C Ic-dI<<lb-cI

b OR
Ic-d I<<1 b-d I

a e

Figure 13. Interesting Point Too Close Case.

If the difference of c and d is significant, the

triplet with c and d may result. A model triplet like this

may get a number of votes, which on one hand, are not enough

to accept it as a "selected" model triplet, but, on the other

hand, do not justify total rejection. It is possible to

change this model triplet to another model triplet consisting

of points that are more distant from each other than those of

the previous model triplet points. Even if a model triplet

belonging to some model did not get enough votes due to noisy

data, it is still possible to recover this model from another

model triplet.

49

B. ALGORITHM PERFORMANCE AND COMPLEXITY

The performance is highly dependent on the number of

interesting points m existing in the test scene. This is true

as the data-base model is changed to that shown in Figure 14.

The test object scene is shown in the left part of Figure 15

and the recognized model scene is shown on the right part of

Figure 15.

MODEL#1

Figure 14. Changed Data-Base Model.

In this case the cpu time for recognition is increased

tremendously. The total number of computation steps for m

interesting points in Affine invariant matching is

proportional to m4 for the worst case. The Hash table size of

order m4 was obtained from

m x MC3 x 3P3 = 6 x m x (m - 1) (m - 2) (m - 3) = M4 (27)

50

TEST OBJECT RECOGNIZED MODEL

Figure 15. More Complicate Test Object and Recognized Model.

where MC3 is the number of different combinations of the Affine

basis, and 3P3 is the number of permutations of three arbitrary

non-collinear points. When the number of interesting points

of the models is small, the matching algorithm will be much

faster. The computation for Hash table setup in the encoding

procedure is usually done off line. If there are k model

points in a test scene of iii points, then the probability of

not choosing a model triplet in £ trials is approximately

P [1 k '

P= (28)

where 3 relates to three non-collinear points. Hence, for a

given c > 0, if we let the probability of missing the correct

triplet P be less than E, the number of the trials t is

k
3 t

log I> loP = log- (5) 1 (29)

51

that is,

logf (30)

log(o - ())

In the algorithm, the procedure of recogni'-ion repeats itself

for each of the selected triplets. The above inequality

describes the worst case number of trials before the matching

is successful. If one wants the probability of missing the

correct triplet to be small, one has to do more triplet

selection. Finding the interesting points is also

computationally expensive. For example, the outline of a test

object is obtained by chain-code in this system. The big

curvature change in the linked chain is selected as an

interesting point. This choice is pattern dependent. A

polyhedral object in the scene naturally suggests the use of

polyhedral vertices, deep concavities, and zero curvature

points. Sometimes, interesting points do not have to appear

physically in the image. For example, an interesting point

may be taken as the intersection of two nonparallel lines that

do not touch in the test object. Reducing the computation

complexity can be achieved by representing a line by only one

pair of interesting points if there are some other interesting

points on this line. This can help by reducing the order of

magnitude n in the computation. In general, Affine invariant

matching is a highly parallel operation. The input test

52

object can be compared against all the models in the Hash

table simultaneously.

C. LIMITATIONS

1. Model Representation

The major limitation of a model based vision system

is the low dimensionality in spatial representation or

description of models or test objects. This restricts the

system's functionality to a limited class of objects observed

from a few fixed viewpoints. The system developed here cannot

be applied to patterns with both convex and non-convex curves.

However, the algorithm still can be performed in these cases

by using the footprint method suggested by R. Hummel and H.

Wolfson [Ref. 1]. The following description is quoted from

that paper.

The footprint is a numerical Affine invariant shape characteristic
that is a representation of the concavity shape. To
compute the footprint, we first normalize a concavity by
applying the transformation which maps its triplet basis
to a standard equilateral triangle. That is, the
concavity endFoi,.L. arc mappr tc (-1,0)(1,0), and the
third point to (0,30.5). To each such normalized shape we
assign a vector of numbers that we call the 'footprint.'
One of the footprint schemes that we can use is
illustrated in Figure 16.

For some constant s (say 5 5 S s 10), we divide the
upper half plane by s + 1 rays based at the origin, with
angle r/s between two consecutive rays i and i + 1. The
footprint will be s-vector (al,a 2, ...,a3), where each
component is quantized into one of a number of discrete
bins.

We now proceed as before to construct a hash table.
Each footprint is used as an entry to the hash table,
where the model and concavity numbers are recorded. In the
recognition phase, each concavity is used to compute a
footprint, and the appropriate entry in the hash table is

53

F-L

Figure 16. The Footprint of a Concavity.
accessed. For each pair, (model, concavity), appearing in the
hash table as the location, we compute the appropriate
Affine transformation to the associated model, and attempt
to verify an instance of the model in the image.

Basically the same method for handling polygon shapes

can be extended to concave shapes.

2. Quantization Problem in Generation of the Hash Key

To convert the Affine coefficient pair to inkey, we

multiply each of the Affine coefficient pair (,q) by a large

constant and sum them up. This conversion causes most of the

inkeys to be equal. Therefore, the generated hashkeys are not

distributed uniformly. These collisions result in a long bucket

list. Such a long bucket list is the main disadvantage of the

present implementation since it slows down the hash table

search speed.

3. Noise Handling

The searching in this implementation is sensitive to

the noise. With noisy interesting points the test triplet

will lead to the situation where the Affine coefficient pair

does not hit the Hash table due to the noise. This is one of

the weaknesses of this implementation. Howevei further work

54

can be done to improve the solution as suggested in Wolfson's

paper. [Ref. 1] The following paragraph is adopted from that

paper.

An Affine transformation in the plane is uniquely
defined by the transformation of three non-collinear
points. However, in practical applications this
transformation may be somewhat distorted, because of noisy
computation of these three points. Knowledge of
additional points, which were transformed to each other
may help to improve the accuracy of the computed
transformation. The incorporating of the Mean Square Error
match seems to be one of the solutions. Specifically,
assume that we are looking for an Affine match between the
sequences of the planar points ui and vi where i =
1,2,...,n. By using the MSE method, we could find the
optimal Affine match T which will minimize the square of
the distance between the sequence Tu1 and vi where i =
1,2,...,n.

D. IMPRESSIONS OF THE ALGORITHM FEATURE

1. Two Phase Algorithm

A key feature of this algorithm is the division of

Modeling (Encoding) and Recognition (Matching) procedures. The modeling

is performed off-line. This enables the speed of an on-line

recognition procedure to be optimized.

2. Hash Implementation

The method described here differs from other existing

model-based matching systems. This method uses hashing

technique to search for the Affine coefficient. The speed of

on-line recognition depends on the size of the interesting

points of the test object. The amount of on-line ?rncessing

does not depend too much on the total number of models

55

existing in the Hash table. In other words, the recognition

time is independent of the number of different models in the

data-base. This advantage makes the method uniquely

attractive as compared to others.

56

V. CONCLUSION

A. SUMMARY

This thesis begins with a survey of various model-based

vision systems. Different feature extraction methods and

matching techniques are also discussed. To achieve not only

the ability to recognize partial occluded test objects but

also to have high processing speed, the Affine invariant

transformation technique is preferred. The Affine invariant

matching was studied by R. Hummel and H. Wolfson. [Ref. 1]

The Affine invariant matching was proposed to provide a high

speed and the effective matching technique.

Motivated by this voting match technique, the main

objective of this thesis was to develop a local system that

can accept an incoming scene and decide where known models

exist in it. Affine invariant matching handles the modeling

and matching procedures independently. The use of a Hash

table indexed by possible Affine coefficient pairs allows for

fast content dependent matching. The program developed here

is in principle similar to that in Reference 1. Some unique

features of this algorithm can be lijted as follows.

• Encoding and Recognition procedures are separated.

• Matching can detect objects under Affine transformation.

57

" Partial matching helps to detect occluded objects.

* The Hashing technique allows us to do content dependent
matching efficiently.

" Many operations in the algorithm can be performed
simultaneously with parallel processing.

B. EXPERIENCE GAINED

The experience gained in this study can be summarized as

follows.

1. Affine Invariant

This is the characteristic of Affine invariant

matching. In experiments, the algorithm can detect objects

under similarity transformations. The models existing in the

scene, can experience translation, rotation, or scaling to

some arbitrary degree. The algorithm is able to recognize the

existing models.

2. Partial Matching

The triplets used in this algorithm are essential

local features. In a composite test scene objects can be

recognized in the presence of occlusion due to the hidden

interesting points without any problem.

3. Speed and Complexity

The computational complexity of this system is highly

dependent on the number of interesting points used after the

preprocessing phase. The complexity of this algorithm grows

as m 4, where m is the number of interesting points. However,

58

if effective classification of composite local features

exists, then it can be incorporated in the Encoding procedure

to improve the system performance.

4. Noise Perturbation

The established system is very rigid in calculating

the hashkey in the Recognition procedure. If part of the

interesting points in the scene are affected by noise, the

calculated Affine coefficient pairs based on those affected

points will not contribute to the evidence accumulation of the

model triplet. This means that the present implementation is

still noise sensitive. However if the number of the

unaffected interesting points is in the majority, contribution

to the voting from other unaffected points still allows

recognition of the test object.

C. RECOMMENDATIONS

The main weakness in the present implementation exists in

the data structure and the decision-making technique.

The data structure used in the system is not efficiently
utilized due to the redundancy of the record fields of
the data file, such as the two dimensional vote array.
This is a physical size problem. If there are more than
14 interesting points in the scene, the system
implemented here cannot handle them. If more memory is
available recompilation of the source code will reduce
the limitation.

On the VERIFY module, the decision-maxing technique used
is not yet mature. The present method just considers the
corresponding edge distance between the model and the
recognized model. If there are scaled or enlarged models
in the test scene, the threshold used in decision-making
needs to be chang,2a from one scaled or enlarged model to

59

another. This needs improvement to obtain a flexible

decision-making strategy.

Beside these two problems, possible subjects for future

study related to Affine invariant matching could be:

Find a more effective local feature classification
technique in model representation. This can help to
reduce the Hash table size and reduce the computation
complexity.

Use the mean square error method to achieve better noise
immunity for the Hash table access in the recognition
phase.

Extend Affine invariant matching to handle 3-D object
recognition.

Find some parallel hardware implementation such as
Content Addressable Memory (CAM) or others to achieve
parallel searching or matching of a test object against
various model points.

60

APPENDIX A

PASCAL-LIKE PSEUDO CODES

This appendix contains those Pascal-like pseudo codes used

in the established system. Explanation of each of the modules

is discussed in Chapter III.

program affine(interestingdata,hashkeydata)

(* affine finds the affine coefficient pairs *)
(* the input is interesting data file

the output is hashkey data file *)

procedure matrix mult(inverse matrix : array;
var difference,coord :array);

begin
for i 1 to 2 do
for j 1 to 2 do
coord[i,j] := coord[i,j] + inversematrix[i,n]

* difference[n,j];
end;

procedure inverse(base matrix : array;
var inversematrix :array);

begin
for i 1 to 2 do
for j 1 to 2 do
determinent := det (basematrix[i,j]);
inversematrix[i,j] := (-l'**(i+j) * basematrix[i,j]

/ determinent;
end;

procedure calculatecoord(basex,basey : array);
begin

for i := 1 to 2 do
begin
basematrix~i,j] basex[i] - basex[i+l];
basematrix[i,j] basey[i] - basey[i+l];

end;
inverse(base matrix,inversematrix);
difference[i,j] := restbase[i] - base[3];
matrix_mult(inverse_matrix,difference,coord);

end;

procedure perm(basex,basey :array;
k : integer);

61

begin
if k 3 then calculate_coord(basex,basey);
else
for i k to 3 do
begin

tx :=basex[i];
ty :=basey[i];
basex[i] :=basex[k];

basey[i] baseyrk];
basex~k] :=tx;
basex[k] :=ty;
perlT(basex,basey,k+l);

end;
end;

procedure collinear(combinationx,combinationy array);
begin

ti arctan((combinationx[3]-combinationx[2]) /
(combinationx[2J-coxnbinationx~l]))

t2 arctan((combinationyr3]-combinationy[2]) /
(combinationy[2]-combinationy[l]))

if ti = t2 then collinear true;
else perm(basex,basey,l)

end;

procedure combination (k, index integer);
begin

if index > 3 then collinear(comx,comy)
else
for i :=k to interestingno do

begin
comx[index] i]
comy[index] i]
combination(i+l, index+1);

end;
end;

(* main affine *
begin

while not eof(interestingdata) do
begin
readln(interestingdata~x[i],y~ifl;
combination(l,l);
end;

end;

program hash (hashkeydata,hashdata);

(hash generates the hash table *)

62

(* input is hashkey data file
output is hash data file *)

procedure initialize;
var i : integer;
begin

for i := 1 to tablesize do
model[i].hashkey := empty;
model[il.link := empty;I end;

procedure hashing(var hashkey : integer; inkey integer);
const multipler = 100000;
begin

inkey := (keyl + key2) * multiplier;
hashkey := (inkey mod tablesize);
if model.hashkey <> empty then

insert(hashkey)
else collision(hashkey);

end;

procedure collision,'hashkey : integer);
var bucket-length : interger;
begin
bucket length := 0;
while model[hashkey].link <> empty do
begin
hashkey := model[hashkey].link;
bucket length := bucketlength + 1;

end;
insert(model[hashkey]);
model[hashkey].link := bucketlength;

end;

(* main hash)
begin
while not eof(hashkeydata) do
begin
readln(hashkeydata,model.inkey,model.keyl,model.key2):

Ki initialize;
hashing(l,model.inkey);

end.

program tally(interestingdata,cadidatedata,hashdata,plotingdata);

(* tally generates the recognized model interesting data point

in the test object space *)

63

(* the input data files are
interetingdata the original information of the model,
candidatedata the test triplet, and
hashdata : the Hash table

the output data file is
plotingdata *)

procedure search(modelno : integer);
begin
while (model.modelid = modelno) and (modelno <= totalmodelno) do

begin
for i:= 1 to testinterestingno do
begin
cand[i].hashkey := cand[i].inkey MOD tablesize;
if (cand[i].hashkey = model.hashkey) then
begin
vote(modelid,tripletid) := vote(modelid,tripletid) + 1;
temporary := model;
(* Temporary is used to collect the accessed entry*)
temporarytable size := temporarytablesize +1;

end;
end;

end;
verify(l);
end;

procedure verify(tripletid);
begin

for i := 1 to temporary table size do
begin

if (screen threshold < vote(modelid,tripletid) then
begin
selectedtripletid := tripletid;
number-selected := number-selected +1;

end
else

begin
successful := false;
end;

(* control goes back to main program for the 2nd test triplet *)

if (selected.modelid = temporary.modelid) and
(selected.tripletid = temporary.tripletid) then

begin
collected.keyl := temporary~tripletid].keyl;
collected.key2 := temporary[tripletid].key2;
reconstruct(numberselected,collected.keyl,collected.key2,

64

selectedmodel_triplet,test_triplet);
end;

end;
end;

search (modelno+l);
end;

procedure reconstruct(numberselected : integer;
keyl,key2 : real;
selectedmodeltriplet,test_triplet : array);

begin

perform the Affine transformation on the
selectedmodeltriplet

and the test-triplet respectively to obtain the model
interesting

points and the interesting points exit in the test object*)

for k 1 to number-selected do
begin
for i 1 to interestingpoint do
(x[i],y[i]) := affine (keyl,key2,selectedmodeltriplet);
for j := 1 to interestingpoint do
(x[j],y[j]) := affine (keyl,key2,test_triplet);

(* find the order corresponding relationship between (x[iJ,y[i])

and (x[j],y[jJ) to obtain ordered(x[i],y[i]) *)

(* perform the square error between the ordered(x[i],y[i])
and the test object interesting coordinate *)

if (moael_triplet[k].squareerror < squareerrorthreshold)
and

(model_triplet[k].square error <= minimunsquareerror)
then

begin
optimumtriplet := k;
minimun squareerror := model triplet(k].squareerror;
end

else
begin
verify(tripletid);
end;

display(optimummodeltriplet);

(* the control goes back to the search for the rest of models *)

65

end;

(* main tally *
begin

readin (interestingdata, total-modelno, interestingno);
while not eof(hashdata) do
readin (hashdata,model .hashkey,model. inkey,model .keyl,model .key2,

model.modelid,model.tripletid,model_triplet);
while not eof(candidatedata) do
begin
readln

(candidatedata, cand. inkey, cand. keyl, cand.key2, test triplet);
search(l);
end;

end.

66

0 1- 0-0 -

I lI a i i

(UNo -

(U fUN -

- , -

, o -

V _ OQ

0 0

%A m- 0 at

4- _

C C

0 0 0 C>>

EE

0 0

EE

-0 I

V4-.

*00
Cq Em " SE

(U 0

Figure A-i. Recognition Procedure Data Flowchart.

67]

APPENDIX B

LISTING OF SOURCE CODES

program gen(interesting);
type ary = array [1..2,1..50] of integer;
var i,j,modelno,interestingno : integer;

interesting : text;
x,y : ary;

begin
open(interesting,'interesting.dat',history new);
rewrite(interesting);

(**************model 1 ************}

modelno 1; interestingno := 7;
x[1,1] 20; x[1,2] 30; x[1,3] := 40; x[1,4] := 50;
x[1,5] 40; x[1,6] := 30; x[l,7] 30;
y[l,1] 30; y[l,2] 40; y[l,3] 30; y[l,4] 20;
y[l,5] := 10; y[1,6] 10; y[1,7] 20;
writeln(interesting,modelno,interestingno);
for i := 1 to interestingno do
writeln(interesting,x[l,i],y[l,i]);

(**************model 2 ************}

modelno 2; interestingno := 5;
x[2,1] := 40; x[2,2] 40; x[2,3] 35; x[2,4] := 30;
x[2,5] := 30;
y[2,1] 35; y[2,2] 20; y[2,3) 20; y[2,4] := 15;
y[2,5] := 35;
writeln(interesting,modelno,interestingno);
for i := 1 to interestingno do
writeln(interesting,x[2,i],y[2,i]);

close(interesting);
end.

* ** **** **** ******* ********** ** **** ******** ********* ****** * ****** *

program preproc(interesting,coordinate);
const total = 9999;{user supply)
type ary = array [l..total] of integer;

aryl = array [1..2,1..2] of real;
ary2 = array (1..3] of integer;
ary3 = array [1..2,1..1] of real;
ary4 = array [1..2,1..2] of integer;

var count,i,j,k,index: integer;
outmodelno,outinterestingno : array [1..10] of integer;
modelno,tripletno,interestingno,table size integer;
x,y,rest_basex,rest_basey : ary;
inverse matrix : aryl;
basex,basey,comx,comy : ary2;

68

diff,coord : ary3;
base -matrix :ary4;
interesting,coordinate text;

procedure matrix mult(inverse-matrix :aryl;
var diff,coord ary3);

const k =2;

1 1 2;
M= 1;

var i,il,n :integer;
begin

for i 1= to 1 do
for ii := 1 to m do
coord[i,il] := 0;

for i := 1 to 1 do
for ii : 1 to m do

for n :=1 to 1 do
coord[i,il] := coord~i,il] + inverse-matrix[i,n]*

diff[n,ilj;
end;

procedure inverse(base matrix ary4;
var inverse-matrix aryl);

var det real;

begin
for i Ito 2do

det (base matrix[l,l) * base_matrix72,23) -
(base -matrix(l,2] * base-matrix(2,l]);

inverse matrix~l,l] :=base -matrix[2,2]/det;
inverse -matrix[1,23 base-Matrix[l,2] * (-1) /det;
inverse matrix[2,l) base-matrix[2,l] * (-1) /det;
inverse matrix2] bs-Marx[l,l] /det;

end;

procedure calculate Icoorct(basex,basey :ary2);
var i,m,il,i2,i3 :integer;
begin

for i := 1 to 2 do
begin

base -matrix[1,i] :=basexril - basexri+l];
base -matrix[2,i] :=basey[i] - basey(i+l];
end;

inverse(base-matrix,inverse-matrix);
i2 := 1;

for i := 1 to interestingno do

{i is the number of basis triplets)

begin
if ((basex[1] <> x~i]) or (basey[l] <> y[i])) and

((basex[2] <> xci]) or (basey[2] <> yrifl) and

69

((basex[31 <> xji]) or (basey[3) <> y[i])) then
begin

rest-basex[i2] := i]
rest basey[i2] i]
i2 :- i2 + 1;

end;
end;

for i := 1 to (interestingno-3) do
begin

diff~l,1] rest-basex[i] - basex[3];
diff[2,1) : rest -basey[i] - basey[3);

matrix mult (inverse-matrix,diff, coord);
count count +1;

i3 count mod (interestingno-3);
if i3 =1 then tripletno := tripletno + 1;
write(coordinate,modelno,tripletno,coord[l, 1],coord[2, 1]);

for il : 1 to 3 do
write(coordinate,basex[il],basey[il]);
writein (coordinate);
end;

end;

procedure perin(basex,basey :ary2;
k : integer);

var i,tx,ty :integer;
begin

if k = 3 then
calculate_coord (basex, basey)

else
for i :=k to 3 do
begin
tx :=basex[i];

ty :=basey~i);
basex~i] basex[k];
basey~i] basey[k];
basex[k] tx;
basey[k) ty;
perm(basex,basey,k+l);
end;

end;

procedure colinear(comx,comy ary2);
var colinearxl,colinearx2 ,colinearyl,colineary2 integer;

tl,t2 :real;
begin

colinearxl : comx[2] - comx[l];
colinearx2 :=comx[3) - comx[2);
colinearyl comy[2] - comy~1];
colineary2 comy[3] - comy[2];
if (colinearxl <> 0) then

tl :=arctan(colinearyl / colinearxl)

70

else ti := 1.5707;
if (colinearx2 <> 0) then

t2 := arctan(colineary2 / colinearx2)
else t2 := 1.5707;

if tI <> t2 then perm(coinx,comy,l);
end;

procedure comb(k,index : integer);{use the recursive)
var i : integer;
begin

if index > 3 then colinear(comx,comy)

else
for i := k to interestingno do

begin
comx~index] i]
comy[index] i]
comb(i+1,index+l);

end;
end;

begin (main)
open(interesting, 'interesting.dat' ,history old);
reset (interesting);
open(coordinate, 'coordinate.dat' ,history :=new);
rewrite (coordinate);
table -size :=0;j:= 1;
while not eof(interesting) do

begin
readln(interesting,outmodelno[j] ,outinterestingno[j 1);
modelno :=outmodelno[j];
interestingno :=outinterestingno[j];
for i :=1 to interestingno do
readln(interesting,x~i],y[i]);

count :=0;tripletno := ;j :=j+l;
comb(l,1);
table-size :=table-size + count;

end;
writeln(coordinate,table-size,outmodelno[l] ,outinterestingno(l],

outmodelno [2] ,outinterestingno [2]);
close(interesting);
close (coordinate);

end.

program keycon(infile,outfile);
type

inrec =record
modelno,tripletno :integer;

71

keyl,key2 : real;
basexl,baseyl,basex2,basey2,basex3,basey3 : integer

end;
outrec = record
outkey integer;
basexl,baseyl,basex2,basey2,basex3,basey3 : integer
end;
aryl = array [0..99999] of integer;

var
a : array[O..99999] of outrec;
b : inrec;
infile,outfile : text;
temp : real;
i,*,jl : integer;
outmodelno,outinterestingno : array [1..50] of integer;
tablesize,ary : aryl;

procedure prime(var primeno integer);
var

is : boolean;
i,j,k,c : integer;

begin
ary[l] 2;
c:= 1;
for i 3 to primeno do
begin

j := 1;
is := false;
repeat
if (i mod ary[j]) =0 then

is := true;
j:= j+1;

until (ary[j] = 0) or (ary[j] > sqrt(i)) or is;
if not is then
begin
c := c+l;
ary[c] :=i;
end;

end;
is:=false;
while not is do
begin
for k := 1 to j do
if(primeno mod ary[k]) = 0 then
is := true;
primeno := primeno+1;

end;
end;

begin
open (infile,'coordinate.dat',history:=old);
reset(infile);

72

open (outfile, 'hash_key.dat' ,history:=new);
rewrite (outfile);

j :=O;
while not eof(infile) do

begin
readln(infile,table-size[j]);
j :=j+l;

end;
close(infile);

open (infile, 'coordinate.dat' ,history:=old);
reset(infile);

ji :=l;
while not eof(infile) do
begin

if j1i table-size~j-l]+l then
beg~.iii

readln(infile,table_size~j-1] ,outmodelno[l] ,outinterpstingno[l],

outmodelno [2] , 'utinterestingno 121);
end

else
readln(infile);
ji : 11
end;
prime(tablesize[j-l]);
write(coutfile,table_size[j-l]);
write(outfile,outmodelno[l] ,outinterestingno~l],
outmodelno[2] ,outinterestingno[2 1);
writeln(outfile);

close (inf ile);

open (infile, 'coordinate.dat ,history:=old);
reset(infile);

i :=0;
while i <> j-l do

with b do
begin

readln (infile, modelno, tripletno, keyl ,key2,
basexl,baseyl,basex2 ,basey2 ,basex3 ,bascv,3);

temp :=(keyl+key2)*l0000000;
a[i].outkey :=trunc (temp);
writeln(outfile,a[i] .outkey,modelno,

tripletno, ke'71, key2 ,basexl, baseyl ,basex2,
basey2 ,basex3 ,basey3);

i :=i+1
end;

close(infile);
close(outfile);
end.

73

******************************** ** ** ** ** * *

program hashing(input,output);
const database modelno = 2;
type

rec = record
inkey,modelno,tripletno,link integer;
keyl,key2 : real;
basexl,baseyl,basex2,basey2,basex3,basey3 integer;
end;

outrec = record
hashkey,inkey,modelno,tripletno,link : integer;
keyl,key2 : real;
basexl,baseyl,basex2,basey2,basex3,basey3 : integer;
end;

var a : array[O..99999] of outrec;
b: rec;
i,j,k,table size : integer;
outmodelno,outinterestingno : array [l..databasemodelnoj

of integer;

procedure print;
var ii : integer;
begin

for il := 0 to table-size do
begin

if a[il].hashkey <> -1 then
with a[il] do
writeln(output,hashkey,inkey,modelno:2,

tripletno:4,keyl,key2,basexl:4,
baseyl:4,basex2:4,basey2:4,basex3:4,basey3:4,1ink)

end

end;

procedure solve collision(var i,j : integer);

(if the hash key is same then find the last same hash key of the

linked chain thru the link)

begin
while a[i].link <> -1 do

begin
i := a[i].link

end;

(test the last hash key of the linked chain if its next position

points to the free entry, till find the free space

74

means the previous linked same hash key
j means the one which is free entry, it also link to p.,evious

same key)

while a[j].hashkey <> -1 do
begin
j :=j+l;
if j > table-size then j 0

end; (while)
end;

procedure initialize;
var il,i2 integer;
begin

for ii : 0 to table-size do
with a[il] do

a[il].hashkey :=-l;
for i2 :=0 to table-size do
with a~i2] do

a[i2].link :=-l;
end;

procedure insert(var i,j:integer);
begin

if (a~i].hashkey =-1) then
begin
a~i].hashkey :=i;
a~i].inkey :=b.inkey;
a[i].modelno :=b.modelno;
a~i].tripletno :=b.tripletno;
a[i].keyl b.keyl;
a[iJ.key2 b.]key2;
a(i].basexl b.basexl;
a[i].baseyl :=b.baseyl;
a[iII.basex2 b.basex2;
a[i].basey2 b.basey2;
a~i].basex3 b.basex3;
a~i].basey3 b.basey3;

end
else

begin
solve -collision(i,j) ;
if (a[i].niodelno <> a[jjj.modelno) and

(a[i71.tripletno <> a[j].tripletno) then
begin

ari].link:=j
a(j].hashkey:=j
aj)j.inkey :=binkey;
a[j].modelno :=b.modelno;
a[j].tripletno :=b.tripletno;
a[j].keyl :=b.keyl;

75

a[j].key2 :=b.key2;
a[j].basexl b.basexl;
a[j].baseyl b.baseyl;
a[j].basex2 b.basex2;
a~j].basey2 :=b.basey2;
a[j].basex3 b.basex3;
a[j].basey3 :=b.basey3;

end
end

end;

begin (* main *
open (input, 'hash key.dat' ,history :=old);
reset(input);
open (output, 'hash.dat' ,history :=new);
rewrite (output);
readln(input,table_size,outmodelno[l] ,outinterestingno[11

,outmodelno [2] ,outinterestingno [2]);
writeln(output,table size,outmodelno[l] ,outinterestingno

[1] ,outmodjelno[2] ,outinterestingno[2]);
initialize;

i :=0;j :=0;
while not eof(input) do

begin
with b do

begin
read(input, inkey);
read (inumodelno, tripletno ,keyl, key2,
basexl,baseyl,basex2,basey2,basex3,basey3);
readln;
i : b.inkey mod table-size;
insert(i,j);
end

end (*while*);
print;
close(input);
close (output)

end.

program test gen(interesting);

type ary =array [1.-2,1.-50] of integer;
var i,j,modelno,interestingno :integer;

interesting :text;
xly :ary;

begin
open(interesting, 'tally interesting.dat' ,history new);
rewrite (interesting);

(*******************test object*********************)

76

modelno:=1;interestingno := 10;
x[1,1] 50; x[1,2] 40; X[1,3] 30;
x[1,4] 10; x[1,5] 10;
x[1,6] := 20; x[1,7] 30; x[1,8] 30; x[1,9] 40;
x[1,10] 40;
y[1,1] 10; y[1,2] 0; y[1,3] 10;
y[l,4] 10; y[1,5] 40;
y[1,6] 40; y[1,7] 50; y[1,8] 30; y[1,9] 30;
y[1,10] 20;
writeln(interesting,modelno,interestingno);
for i := 1 to interestingno do
writeln(interesting,x[l,i],y[l,i]);

(*******************alternative data s**********************)
, y[1:1] 90; y[1,2] 70; y[1,3] 50; y[1,4] 30;

y[1,5] 40; y[1,6] 30; y[1,7] 50; y[l,8] 70;
y[1,9] 90; y[1,l0] 90; y[1,1l] := 70; y[1,12] 50;
y[1,13] 70; y(l,14] 90;
writeln(interesting,modelno,interestingno);
for i := 1 to 14 do
writeln(interesting,x[l,i],y[l,i]);

I
close(interesting);

end.

program testpreproc(interesting,coordinate);
const total = 9999;(user supply)
type ary = array [l..total] of integer;

aryl = array [1..2,1..2] of real;
ary2 = array [1..3] of integer;
ary3 = array [1..2,1..1] of real;
ary4 = array [1..2,1..2] of integer;

var count,i,k,index : integer;
modelno,interestingno,table size : integer;
x,y,rest_basex,restbasey : ary;
inversematrix : aryl;
basex,basey,comx,comy ary2;
diff,coord ary3;
base matrix ary4;
interesting,coordinate text;

procedure test_ma'&rix mult(inverse matrix aryl;
var diff,coord : ary3);

const k = 2;
1 = 2;

m = 1;
var i,j,n integer;
begin

for i 1 to 1 do

77

for j :=1 to m do
coord[i,j] :=0;

for i 1= to 1 do
for j := 1 to m do

for n :=1 to 1 do
coord[i,j] : coord~i,j] + inverse-natrix[i~n]*

diff~n,j];
end;

procedure test -inverse(base matrix : ary4;
var inverse-matrix :aryl);

var det :real;

begin
for i :=1 to 2 do

det :~(base matrix[1,1] * base matrix[2,2J) -

(base -matrix[l,2] * base-matrix[2,l]);
inverse matrix[l,1] base_matrix[2,2]/det;
inverse matrix[1,2] base -matrix[l,2] * (-1) /det;
inverse matrix[2,1) base-matrix[2,1] * (-1) /det;
inverse-matrix[2,2] base-matrix[l,l] /det;

end;

procedure test-calculate-coord(basex,basey :ary2);
var i,j,il,i2 :integer;
begin

for i :=1 to 2 do
begin

base matrix[1,i] basexri] - basex[i+l];
base matrixj2,i] basey~i] - basey[i+l];
end;

test -inverse (base matrix, inverse-matri x);
i2 :=1;
for i :=1 to interestingno do

(this i is the number of basis triplet)

begin
if ((basex[l] <> x[i]) or (basey[1] <> y[ijj)) and
((basex[2] <> x[i]) or (baseyr2] <> y[i])) and
((basex[3] <> x[i]) or (basey[3j <> y[i])) then
begin

rest -basex[i2] ~]
rest-basey[i2) ~]
i2 := i2 +1;

end;
end;
for i :=1 to interestingno-3 do

begin
diff[3.,1] rest -basex~i] - basex[3];
diff[2,1] rest_basey[i] - basey[3];

test-matrix mult(inverse matrix,diff,coord);

78

count :=count +1;
write(coordinate,modelno,count,coord[l,l] ,coord[2,l]);

for ii : 1 to 3 do
write(coordinate,basex~il],basey~il]);
writein (coordinate);
end;

end;

procedure test-Perm(basex,basey :ary2;
k :integer);

var i,tx,ty :integer;
begin

if k = 3 then
test-calculate-coord(basex,basey)

else
for i := k to 3 do
begin
tx := basexfji];

ty := basey~i];
basex[i] basex[k];
basey~i] basey[k];
basexrk] tx;
basey[k] :=ty;
testperm (basex, basey, k+l);
end;

end;

procedure test colinear(conx,cony ary2);
var colinearxl colinearx2,colinearyl,colineary2 integer;

tl,t2 :real;
begin

colinearxl comx[2) - comx[l];
colinearx2 comx[3] - comx[2];
coliriearyl comy[2] - comy[l];
colineary2 comyII3] - corny(2];
if (colinearxl <> 0) then

ti : arctan(colinearyl / colinearxl)
else tl :=1.5707;
if (colinearx2 <> 0) then

t2 := arctan(colineary2 / colinearx2)
else t2 := 1.5707;

if tl <> t2 then testperm(comx,comy,l);
end;

procedure comb(k,index : integer);{use the recursive)
var i : integer;
begin

if index > 3 then test-colinear(comx,comy)

else
for i :=k to interestingno do

begin

79

comx~index])]
comy[index] i]
comb(i+l,index+l);

end;
end;

begin~main)
open(interesting, 'tally interestinrg.dat' ,history := old);
reset (interesting);
open(coordinate, 'tally coordinate.dat' ,history :=new);
rewrite (coordinate);
table size :=0;
while not eof(interesting) do

begin
readln(interesting,modelno, interestingno);
writeln(coordinate, interestingno);
for i :=1 to interestingno do
readln(interesting,x[i],y[i]);

count :=O;
comb(.,l);
table-size :=table-size + count;

end;
close (interesting);
close (coordinate);

end.

program test-keycon(infile,outfile);
type

inrec = record
modelno,tripletno :integer;
keyl,key2 :real;
basexl,baseyl,basex2 ,basey2 ,basex3 ,basey3 :integer

end;
outrec =record

outkey integer;
basexl,baseyl,basex2 ,basey2 ,basex3 ,basey3 :integer

end;
var

a :array[0. .99999] of outrec;
b : inrec;
infile,outfile : text;
temp :real;
ij,,.. 'erestingno :integer;
table_-,*ze :array[O..99999] of integer;

begin
open (infile, 'tally coordinate.dat' ,history:=old);
reset(infile);
open (outfile, 'tally.dat' ,history:=new);
rewrite(outfile);

80

j :=O;
i := 0;

readin (infile, interestingno);
writeln(outfile, interestingno);
while not eof(infile) do

with b do
begin

* ~readin (infile, modelno, tripletno, keyl, key2,
basexl,baseyl,basex2,basey2,basex3 ,basey3);

temp := (keyl+key2)*l0000000;
a~i].outkey :=trunc (temp);
writeln(outfile,a[i) .outkey,keyl,key2,
basexl,baseyl,basex2,basey2,basex3 ,basey3);
i := i+l

end;
close(infile);
close(outfile);
end.

program tally(input,candfile,output);
const database modelno = 2;
type candrec = record

inkey :integer;
keyl,key2 :real;
basexl,baseyl,basex2,basey2 ,basex3,basey3 integer;
end;
outrec = record
hashkey,inkey :integer;
keyl,key2 :real;
basexl,baseyl,basex2 ,basey2 ,basex3 ,basey3 integer;
end;
modelrec = record
hashkey, inkey,modelno,tripletno, link :integer;
keyl,key2 :real;
basexl,baseyl,basex2 ,basey2 ,basex3 ,basey3 :integer;
end;
collected modeirec =record
hashkey, inkey,modelno,tripletno, link :integer;
keyl,key2 : real;
basexl,baseyl,basex2 ,basey2,basex3 ,basey3 :integer;
votel :integer;
end;

var initimodell,temporary_model,temp :array[0. .9999] of
modelrec;

* model : array [0. .23000] of modelrec;
collected -model : array[l. .9999] of collected-modelrec;
cand: array[0. .19999] of candrec;

candl :array [l1-9999,1-.2] of candrec;
i,j ,jl,kl,key,m,index,count :integer;

81

n,maximunl,maximun2 : integer;
table size,interestingno,test interestingno_3 : integer;
candfile : text;
vote : array[O..database modelno,O..27999] of integer;
outmodelno,outinterestingno : array [l..database_modelno]

of integer;

procedure initializel;
var i,j : integer;
begin

for i := 0 to database modelno do
for j := 0 to table-size do
vote[i,j] := 0;

end;

procedure initialize2;
var i : integer;
begin

for i := 0 to table-size do
with model[i] do

hashkey := -1;
end;

procedure initialize3(m : integer);
var i : integer;
begin

for i := 1 to m do
with temporary model[i] do
temporarymodel[i] := initimodell[i];

end;

procedure print model_triplet(i :integer);

(* store the information of the selected triplet *)

begin
with collectedmodel[i] do

writeln(output,hashkey,inkey,modelno:2,tripletno:4,
keyl,key2,basexl:4,baseyl:4,basex2:4,basey2:4,
basex3:4,basey3:4,votel);

end;

procedure print_test triplet(i,k : integer);

(* store the information of the test triplet *)
(* i is the corresponding between select model triplet and test

triplet *)
begin

with candli,k] do

82

writeln(output,' ':lO,inkey,' ':6,keyl,key2,basexl:4,
baseyl:4,basex2:4,basey2:4,basex3:4,basey3:4);

end;

procedure allmaximunselected(n : integer);

(* store all the selected model triplets even from different
model *)

var i,j,cout : integer;
begin
for i := 1 to n do

begin
with collectedmodel[i] do

if ((modelno = 1) and (votel = maximuni))
or

((modelno = 2) and (votel = maximun2))
then
begin
printmodel-triplet(i);

printtest_triplet(i,l);
end;

end;
end;

procedure verify(j,jl,m : integer;var n : integer);

(* collect all the accessed model *)
(* n is index value of all selected model *)

var i,k,kl,l : integer;
begin

kl := 1;
for i := 1 to m do
with temporarymodel[i] do
if (modelno = temporarymodel[jl].modelno) and

(tripletno = temporarymodel[jl].tripletno) then
begin

collectedmodel[n].hashkey := temporary model[i].hashkey;
collected_model[n].inkey := temporarymodel[i].inkey;
collected_model[n].modelno := temporary model[ij.modelno;
collectedmodel[n.tripletno := temporarymodel[i].

tripletno;
coilectedmodel(n].keyl := temporarymodel[i].keyl;
collectedmodel[n].key2 := temporarymodel[i].key2;
collectedmodel[n].basexl := temporarymodel[i].basexl;
collected_model(n].baseyl := temporarymodeli].baseyl;
collectedmodel[n].basex2 := temporarymodel[i].basex2;
collected_model[n].basey2 := temporarymodel(i].basey2;
collected_model[n].basex3 := temporarymodel(i].basex3;

83

collected -model [n3 .basey3 temporary model [i] .basey3;
collected_ model[n].votel
vote[temporary__model [i) .modelno, temporary__model[iJ.
tripletno);
for k := (j - test-interestingno_3) to j-1 do

if (cand~k].inkey = temporary_ model [i].inkey) and
(cand[k] .keyl = temporary model [i] .keyl) and
(cand[k] .key2 =temporary model [i] .key2) then

begin
candl~n,l] :=cand~k];

ki := ki + 1;
end;

n :=n+1;
end,
initialize3(in);

end;

procedure find maxirnun(m,j :integer;var ji integer);

(j1 is the selected model triplet index value *
var i :integer;

maximun :integer;
begin

maximun :=O;
for i :=1 to m do

begin
if (vote[teinporary model [i] .modelno,temporary model [i].

tripletno) > maximun) then
begin

jl =i
maximun
vote [temporary model (i] .modelno, temporary model [i].
tripletno];

(here the 1 and 2 as the all different models in database *
(each model has it's own maximun vote *)

if (temporary_ model[i].modelno =1) and
(maximun > maximunl)

then inaximunl :=maximun;
if (temporary model[i].modelno = 2) and

(maximun > znaximun2)
then maximun2 := maximun;

end;
end;

end;

procedure search(j,key:integer;var m :integer);

(m is the length of kth hash key bucket *

84

var i,i2 :integer;
begin

1 : key;
while (i <> -1) do

begin
if (cand[j].inkey = model[i].inkey) and

(cand[j].keyl = model[i].keyl) and
(cand~j].key2 =model[i].key2) then

begin
temporary model~m] := rnodel[i];
with temporary model~m] do
vote[modelno,tripletno] :=vote[modelno,

tripletno]+l;

M := M +1;
end;

i := model[i].link;
end;

end;

begin (* main *
open (input, 'hash.dat',history := old);
reset(input);
open (candfile, 'tally.dat' ,history :=old);
reset(candfile);

* open (output,'vote.dat',history :=new);
rewrite (output);

readln(input,table_size,outmodelno[l] ,outinterestingnojl]

outmodelno [2] ,outinterestingno [21);
readln(candfile, interestingno);
test -interestingno_3 :=interestingno - 3;

initializel ;initialize2;
i :=O;j := 0;
while (i < table-size) and (not eof(input)) do
begin

with temp~i] do
begin

readinp,hashkey, inkey, modelno, tripletno,
keyl,key2,

basexl,baseyl,basex2,basey2,basex3,basey3,link);
end;
index :=temp[i].hashkey;
model[index] := temp~i];

end; (*while*)
m := 101l :=l;n 1

(*********************CANDIDATE FILE*****************)
while not eof(candfile) do

begin
with cand[j] do

begin

85

readin (candfile, inkey, keyl, key2, basexi, baseyl,
basex2 ,basey2 ,basex3 ,basey3);

end;
key := cand~j].inkey mod table-size;
search(j,key,m);
j= j+l;
count := j mod test -interestingno_3;
if count = 0 then
begin

find Imaximun(m,j,jl);
verify(j,jl,m,n)
m := 1;
initializel;
end;

end;
all -maximun -selected(n);

(*********************VOTEING RESULT********************)
close(input);
close (candfile),
close (output)

end.

program reconstruct(interesting,vote,ploting);
const totalmodeli. -% = 2;
type

aryl = array [1.-10] of integer;
ary2 = array [1. .999] of integer;
ary3 = array [1.-99] of real;
ary4 = array [1.-10,1.-99] of integer;
ary5 = array [1.-3] of integer;
ary6 = array [1.-2,1.-2] of integer;
ary7 = array [1.-2,1.-2] of real;
ary8 = array [1.-2,1.-1] of real;

var
orimodelno :aryl;
select-basex,select_basey,test_basex,test_basey,rest basex,

rest -basey :ary2;
hashkey, inkey, modelno, tripletno :integer;
recogmodelno, recoginteresting,vot :integer;
collected_keyl,collected -key2 :real;
test -recogx,test recogy,ordered-test-inter coordx,

ordered test inter -coordy,
ordered test basex,ordered-test_basey :ary3;

x,y,oriinterestno :ary4;
oritx,ority :ary5;
base -matrix :ary6;

inverse_matrix :ary7;
diff,coord :ary8;

86

deletemodelno array [O..totalmodelno] of integer;
interesting,vote,ploting : text;
korder,jr : integer;
i : integer;

procedure matrixmult(inverse matrix : ary7;
var diff,coord : ary8);

(this is for the matrix multiplication of inverse of
x(l-2) x(2-3) restx(i)-x(3)
y(l-2) y(2-3) and resty(i)-y(3))

const k 2;
1 2;

in 1;
var i,il,n integer;
begin

for i := 1 to 1 do
for il := 1 to m do

coord[i,il] : 0;
for i := 1 to 1 do

for il 1 to m do
for n 1 to 1 do
coord[i,il] := coord[i,il] + inverse-matrix[i,n] *

diff[n,ii];
end;

procedure inverse(basematrix : ary6;
var inverse-matrix : ary7):

(find the inverse matrix of x(l-2) x(2-3)
y(1-2) y(2-3)

var det real;

begin
det (base_matrix[l,l] * base matrix[2,2) -(base_matrix[l,2] * base matrix[2,1]);

inversei matrixl,l] base matrix[2,2]/det;
inverse matrix[1,2] base-matrix[l,2] * (-1) /det;
inversematrix[2,1] base-matrix[2,1] * (-1) /det;
inversematrix[2,2] base-matrix(l,l] /det;

end;

procedure calculatecoord(recogmodelno : integer;

cbasex,cbasey : ary5);

(calculate the /xi and /eta of the

87

(select-basex,select_basey) in of the model)

var i,m,il,i2,i3 :integer;
begin

for i :=1 to 2 do
begin

base -matrix[l,i] cbasex[i] - cbasex[i+l];
base -matrix[2,i] cbasey~i] - cbasey[i+1];
end;

inverse(base-matrix, inverse-matrix);
i2 :=1;

for i :=1 to oriinterestno[orimodelno[recogmodelno],
recogmodelno] do

begin
if ((cbasex[1] <> x[recogmodelno, i])
or (cbasey[l] <> y[recoginodelno,i])) and

((cbasex[2] <> x[recogniodelno,i])
or (cbasey[2] <> y[recogmodelno,i])) and
((cbasex(3] <> x[recogmodelno,i])
or (cbasey[3] <> y[recogmodelno,ij)) then

begin
rest -basex[i] x(recogmodelno, i];
rest-basey~i] y[recogmodelno,i];

diff[1,1] rest_basex[i] - cbasex(3];
diff[2,1] rest_basey~i] - cbasey[3];
matrix mult(inverse matrix,diff,coord);
ordered -test inter coordx[i] :=coord[1,1] *
(ordered_testE-basexrllj-ordered-test-basex[2J)+
coord[2,l]* (ordered -test_basex[2]-

ordered -test-basex[3])+
ordered -test -basex[3j;
ordered test inter-coordy~i] :=coord[l, 1] *
(ordere'd-test basey[1] -ordered-test-basey[2]) +
coord[2, 1] *(ordered test_basey[2] -

ordered -test-basey[3])+
ordered-test-basey[3];
end;

end;
for i 1 to oriinterestno[orimodelnofrecogmodelno],

recogmodelno] do
writeln(ploting,ordered -test -inter_coordx[i],

end; ordered-test-inter-coordy(i]);

procedure colinear(var comx,comy :ary5;
var tl,t2 :real);

(using tangent y/x to test if 3 points are colinear?
tl and t2 are the tangent value of any 2 pairs of coordinates)

var colinearxl,colinearx2 ,coliriearyl,colineary2 :integer;

begin
colinearxl comx[2] - comx[l];
colinearx2 comx[3] - comx[2];
colinearyl comy[2] - comy[l];
colineary2 comy[3] - comy[2];
if (colinearxl <> 0) then

ti := arctan(colinearyl / colinearxl)
else tI := 1.5707;
if (colinearx2 <> 0) then

t2 := arctan(colineary2 / colinearx2)
else t2 := 1.5707;

end;

procedure pretest(i,j : integer;

var tl,t2 : real);

{prepareing for colinear testing)

var count : integer;
begin

count := 1;
while ((testrecogx[jJ<>O) or (testrecogy[j]<>O)) and

(count < 4) do
begin
oritx[count]:=x[i,j];
ority[count]:=y[i,j];
orderedtest intercoordx[j = testrecogx[j];
orderedtest inter coordy[j] testrecogy[j];
orderedtest basex~count] := testrecogx[j];
ordered test-basey[count] testrecogy[j];
j := j+l;
count := count+l;
end;

colinear(oritx,ority,tl,t2);
end;

procedure mapping(bx,by : real;
var ordering : integer;

i : integer);

{make the first record data from the vote corresponding to
that in the second record bx,by is the input (selectbasex
selectbasey) or the calculated rest interesting point in
the model ordering is to pass back to match the interesting
point between model and recognized model)

var
j integer;

begin
for j := 1 to oriinterestno[orimodelno[i],i) do

89

begin
if (abs(bx - x[i,j]) < 0.00001) and

(abs(by - y[i,j]) < 0.00001) then
begin

ordering := j;
end;

end;
end;

procedure interest;

(read into the original model interesting number and their
coordinates)

var
i,j,k,kl : integer;

begin
open(intere3ting,'interesting.dat',history old);
reset(interesting);
open(ploting,'ploting.dat',history := new);
rewrite(ploting);
i:=I;
while not eof(interesting) do

begin
read(interesting,orimodelno[i]);

readln(interesting,oriinterestno[orimodelno(i],i]);
for j := 1 to oriinterestno[orimodelno[i],i] do

readln(interesting,x[orimodelno[i],j],
y[orimodelno[i],j]);

i := i+l;
korder :=i;
end;

for k:= 1 to orimodelno[korder-l] do
for kl := 1 to oriinterestno[orimodelno[k],k] do

end;

procedure recognized;

(read the recognized model i.e., vote data find the order in
the recognized model)

var
i,il,i2,j,jl,k : integer;
select model_tempx,select model tempy,tl,t2 :real;

begin
open (vote,'vote.dat',history := old);
reset (vote);
i :=I;
while (not eof(vote)) do
begin

90

readln(vote,hashkey, inkey,modelno,tripletno,collected_keyl,
collected_key2,
select_basex[l] ,select_basey[l] ,select_basex[2],
select basey[2] ,select_basex[3] ,select basey[3] ,vot);

readln (vote, inkey, collected_keyl, collected -key2,
test basex~l] ,test basey[l] ,testbasex[2],
test basey[2] ,test_basex[3],testbasey[3]);

recogmodelno := modelno;
if (recogmodelno <> deletemodelno~recogmodelno]) and

(vot/ (oriinterestno~orimodelno(recogjmodelno],
recogmoa,.'Lno]-3) >= 05

then

(The vote number must be less than original model interesting
number - 3 and greater than 1 or a relative ratio ,i.e. vote
number vs. original interesting number - 3, must greater or
equal to threshold 0.5)

(((oriinterestno[orimodelno[recogmodelno],
recogmodelno]-3) >= vot) and
(vot > 1)) then)

begin
for J:=1 to 3 do
begin
mapping(selectbasex[j] ,select_basey[j] ,jr,

* recogmodelno);
test recogx~jr] :=test -basex~j);
test recogy[jr] :=test-basey[j];

* end;
select-model-tempx collected_keyl*(select_basex[l]-

select-basex[2])+ collec .' -key2*(select_basex[2]-

select -basex [3])+select_.. sex [3];
select-model-tempy :=collected_keyl*(select-basey[l]-

select-basey[2])e collected_key2*(select_basey[2]-

select -basey[3 fl-fselect_basey[3];
mapping(select-model_tempxselect-model-tempyjr,

recoginodelno);
test recogx[jr) : collected_keyl* (test_basex[1]-

test -basex [2]) +
collected_key2* (test_basex[2]-test-basex[3])

+test-basex[3):
test-recogyrir] :=collected keyl* (test basey[l]-

*test -basey [2]) +
collected_key2* (test_basey[2]-test-basey[3))

+test_basey[3];
for j1 1= to vot-1 do
begin

91

readln(vote,hashkey, inkey,modelno,tripletno,
collected -keyl, collected key2,

select-basex[l] ,select basey[l] ,select -basex[2],
select -basey[2) ,select -basex[3],select-basey(3]);
readin (vote, inkey,collected_keyl, collected -key2,
test-basex[l],test_basey~l],test_basex[2],
test -basey[2),test_basex[33,test_baseyl3]);

select-model tempx :=collected keyl*(select_basex~l3-

select-basex[2])+ collected key2* (select_basex[2 3-

select-basex[3])+select-basex[3J;
select-model tempy :=collected keyl*(select_baseyf 1]-

select-basey[2])+ collected key2* (select-basey[2]-

select-basey[3])+select-basey[3];

mapping(select_model -tempx,select-model-tempy,jr,
rez-ogiodelno);

test-recogx[jr] :=collected keyl*(test basex[l]-
test-basex(2])+collected-key2*
(test-basex[2)-test-basex[3))+test-basex[3];

test_recogy[jr] : collected keyl* (test baseyf 1]-
test-basey[2])+collected-key2*
(test_basey[2]-test_basey[3])+testbasey[3];

end;
recoginteresting :=vot+3;

writeln (plating, recogmnodelno, oriinterestno(
orimodelno[recogmodelno) ,recogmodelno 3);

pretest(recogmodelno, il,tl,t2);
if tl<>t2 then calculate-coord(recogmodelno,

oritx, ority)
else pretest(recogmodelno,il+l,tl,t2);

deletemodelno~recogmodelno]: recogmodelno;
end

end;
end;

begin(ma in)
interest;
recognized;
end.

92

LIST OF REFERENCES

1. Lamdan, Y., Schwartz, J.T., and Wolfson, H.J., "Object
Recognition by Affine Invariant Matching," IEEE Conference on
Computer Vision and Pattern Recognition, June, 1988.

2. Lu, S.Y., and Fu, K.S., "Stochastic Error-Correction
Syntax Analysis for Recognition of Noisy Patterns," IEEE
Trans. Comput., v. C-26, p. 296-301, December, 1977.

3. Fu, K. S., On Syntactic Pattern Recognition and Stochastic Languages in Frontiers
of Pattern Recognition, pp. 56-78, S. Watanabe, editor, Academic
Press, New York (1970).

4. Stockman, G.C. Recognition Parts and Their Orientation
for Automatic Matching Machining, Handling and Inspection.
Rep. NSF-SIBR-Phase I, NTIS Order PB 80-178817.

5. Wallace, T.P., Matchell, O.R., and Fukunaga, K., "Three
Dimensional Shape Analysis Using Local Shape Descriptors,"
in IEEE Transactions on Pattern Analysis and Machine Intelligence, v. PAM-3,
pp. 1004-1008, 1981.

6. Gonzalez, R.C, and Wintz, P., Digital Image Processing, p. 354,
Addison-Wesley Publishing Company, 1977.

7. Ballard, D.H., "Generalizing the Hough Transform to Detect
Arbitrary Shapes," in Pattern Recognition, v. 13, no. 2,
pp. 111-122, 1981.

8. Moffitt, F.H., and Mikail, E., Photogrammetry, p. 593, Harper
& Row Publishers, New York, 1980.

9. Lum, V.Y., Yuen, P.S.T., and Dodd, M., "Key-to-Address
Transform Techniques: A Fundamental Performance Study on
Large Existing Formatted Files," Communications of the ACM, April
1971, pp. 228-239.

10. Subroutine Package for Image Data Enhancement and Recognition, University of
Osaka, Japan, 1983.

11. Pavl idis, T., Algorithms for Graphics and Image Processing, pp. 144-145,
Computer Science Press, Inc., 1982.

93

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 62
Department of Electrical and Computer

Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Chin-Hwa Lee, Code 62LE 7
Department of Electrical and Computer

Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Chang Yang, Code 62 YA 2
Department of Electrical and Computer

Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Mr. Hsu, Tao-i 2
Post Office Box 8243-19
TA KI, TAIWAN, R.O.C.

94

